×

zbMATH — the first resource for mathematics

Adiabatic hydrodynamics: the eightfold way to dissipation. (English) Zbl 1388.81456
Summary: Hydrodynamics is the low-energy effective field theory of any interacting quantum theory, capturing the long-wavelength fluctuations of an equilibrium Gibbs densitymatrix. Conventionally, one views the effective dynamics in terms of the conserved currents, which should be expressed via the constitutive relations in terms of the fluid velocity and the intensive parameters such as the temperature, chemical potential, etc. . . However, not all constitutive relations are acceptable; one has to ensure that the second law of thermodynamics is satisfied on all physical configurations. In this paper, we provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint.
The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective actions for adiabatic transport. The theory of adiabatic fluids, we speculate, provides a useful starting point for a new framework to describe non-equilibrium dynamics, wherein dissipative effects arise by Higgsing the abelian symmetry.

MSC:
81T28 Thermal quantum field theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L.D. Landau and E.M. Lifshitz, Fluid mechanics, Course of theoretical physics volume 6, Butterworth-Heinemann (1987).
[2] Bhattacharyya, S., Constraints on the second order transport coefficients of an uncharged fluid, JHEP, 07, 104, (2012)
[3] Banerjee, N.; etal., Constraints on fluid dynamics from equilibrium partition functions, JHEP, 09, 046, (2012) · Zbl 1397.82026
[4] Jensen, K.; etal., Towards hydrodynamics without an entropy current, Phys. Rev. Lett., 109, 101601, (2012)
[5] Erdmenger, J.; Haack, M.; Kaminski, M.; Yarom, A., Fluid dynamics of R-charged black holes, JHEP, 01, 055, (2009) · Zbl 1243.83037
[6] Banerjee, N.; etal., Hydrodynamics from charged black branes, JHEP, 01, 094, (2011) · Zbl 1214.83014
[7] Son, DT; Surowka, P., Hydrodynamics with triangle anomalies, Phys. Rev. Lett., 103, 191601, (2009)
[8] R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE]. · Zbl 1348.83040
[9] Jain, S.; Sharma, T., Anomalous charged fluids in 1 + 1D from equilibrium partition function, JHEP, 01, 039, (2013) · Zbl 1342.83070
[10] Banerjee, N.; Dutta, S.; Jain, S.; Loganayagam, R.; Sharma, T., Constraints on anomalous fluid in arbitrary dimensions, JHEP, 03, 048, (2013)
[11] Jensen, K.; Loganayagam, R.; Yarom, A., Thermodynamics, gravitational anomalies and cones, JHEP, 02, 088, (2013) · Zbl 1342.83245
[12] Jensen, K.; Loganayagam, R.; Yarom, A., Anomaly inflow and thermal equilibrium, JHEP, 05, 134, (2014)
[13] Jensen, K.; Loganayagam, R.; Yarom, A., Chern-Simons terms from thermal circles and anomalies, JHEP, 05, 110, (2014)
[14] Torabian, M.; Yee, H-U, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-abelian symmetries, JHEP, 08, 020, (2009)
[15] Kharzeev, DE; Warringa, HJ, Chiral magnetic conductivity, Phys. Rev., D 80, 034028, (2009)
[16] Jensen, K., Chiral anomalies and AdS/CMT in two dimensions, JHEP, 01, 109, (2011) · Zbl 1214.81220
[17] Amado, I.; Landsteiner, K.; Pena-Benitez, F., Anomalous transport coefficients from kubo formulas in holography, JHEP, 05, 081, (2011) · Zbl 1296.81122
[18] Landsteiner, K.; Megias, E.; Pena-Benitez, F., Gravitational anomaly and transport, Phys. Rev. Lett., 107, 021601, (2011)
[19] Kharzeev, DE; Yee, H-U, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev., D 84, 045025, (2011)
[20] Dubovsky, S.; Hui, L.; Nicolis, A., Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev., D 89, 045016, (2014)
[21] Loganayagam, R.; Surowka, P., Anomaly/transport in an ideal Weyl gas, JHEP, 04, 097, (2012) · Zbl 1348.83040
[22] Neiman, Y.; Oz, Y., Relativistic hydrodynamics with general anomalous charges, JHEP, 03, 023, (2011) · Zbl 1301.81257
[23] Jensen, K., Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev., D 85, 125017, (2012)
[24] Nair, VP; Ray, R.; Roy, S., Fluids, anomalies and the chiral magnetic effect: a group-theoretic formulation, Phys. Rev., D 86, 025012, (2012)
[25] Valle, M., Hydrodynamics in 1 + 1 dimensions with gravitational anomalies, JHEP, 08, 113, (2012) · Zbl 1397.83043
[26] Landsteiner, K.; Megias, E.; Pena-Benitez, F., Anomalous transport from kubo formulae, Lect. Notes Phys., 871, 433, (2013)
[27] Banerjee, R., Exact results in two dimensional chiral hydrodynamics with gravitational anomalies, Eur. Phys. J., C 74, 2824, (2014)
[28] Megias, E.; Pena-Benitez, F., Holographic gravitational anomaly in first and second order hydrodynamics, JHEP, 05, 115, (2013) · Zbl 1342.83406
[29] Banerjee, R.; Chakraborty, P.; Dey, S.; Majhi, BR; Mitra, AK, Two dimensional hydrodynamics with gauge and gravitational anomalies, Phys. Rev., D 89, 104013, (2014)
[30] Haehl, FM; Loganayagam, R.; Rangamani, M., Effective actions for anomalous hydrodynamics, JHEP, 03, 034, (2014)
[31] Banerjee, R.; Dey, S., Constitutive relations and response parameters in two dimensional hydrodynamics with gauge and gravitational anomalies, Phys. Lett., B 733, 198, (2014) · Zbl 1370.76199
[32] Jimenez-Alba, A.; Melgar, L., Anomalous transport in holographic chiral superfluids via kubo formulae, JHEP, 10, 120, (2014)
[33] Yee, H-U, Chiral magnetic and vortical effects in higher dimensions at weak coupling, Phys. Rev., D 90, 065021, (2014)
[34] G.M. Monteiro, A.G. Abanov and V.P. Nair, Hydrodynamics with gauge anomaly: variational principle and Hamiltonian formulation, arXiv:1410.4833 [INSPIRE].
[35] R. Banerjee, S. Dey and B.R. Majhi, Entropy current in two dimensional anomalous hydrodynamics and a bound on the sum of the response parameters, arXiv:1412.5878 [INSPIRE].
[36] Bhattacharyya, S., Entropy current and equilibrium partition function in fluid dynamics, JHEP, 08, 165, (2014) · Zbl 1333.81066
[37] Bhattacharyya, S., Entropy current from partition function: one example, JHEP, 07, 139, (2014)
[38] Onsager, L., Reciprocal relations in irreversible processes. I, Phys. Rev., 37, 405, (1931) · JFM 57.1168.10
[39] Onsager, L., Reciprocal relations in irreversible processes. II, Phys. Rev., 38, 2265, (1931) · Zbl 0004.18303
[40] Policastro, G.; Son, DT; Starinets, AO, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 87, 081601, (2001)
[41] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008)
[42] Taub, AH, General relativistic variational principle for perfect fluids, Phys. Rev., 94, 1468, (1954)
[43] Carter, B., Elastic perturbation theory in general relativity and a variation principle for a rotating solid star, Commun. Math. Phys., 30, 261, (1973) · Zbl 0269.73011
[44] Dubovsky, S.; Gregoire, T.; Nicolis, A.; Rattazzi, R., Null energy condition and superluminal propagation, JHEP, 03, 025, (2006) · Zbl 1226.83090
[45] Dubovsky, S.; Hui, L.; Nicolis, A.; Son, DT, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev., D 85, 085029, (2012)
[46] Bhattacharya, J.; Bhattacharyya, S.; Rangamani, M., Non-dissipative hydrodynamics: effective actions versus entropy current, JHEP, 02, 153, (2013) · Zbl 1342.76006
[47] A. Nicolis and D.T. Son, Hall viscosity from effective field theory, arXiv:1103.2137 [INSPIRE].
[48] Haehl, FM; Rangamani, M., Comments on Hall transport from effective actions, JHEP, 10, 074, (2013)
[49] Geracie, M.; Son, DT, Effective field theory for fluids: Hall viscosity from a Wess-Zumino-Witten term, JHEP, 11, 004, (2014)
[50] Feynman, RP; Vernon, FLJ, The theory of a general quantum system interacting with a linear dissipative system, Annals Phys., 24, 118, (1963)
[51] Liu, I-S, Method of Lagrange multipliers for exploitation of the entropy principle, Archive Ration. Mech. Anal., 46, 131, (1972) · Zbl 0252.76003
[52] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [INSPIRE]. · Zbl 1263.83009
[53] York, MA; Moore, GD, Second order hydrodynamic coefficients from kinetic theory, Phys. Rev., D 79, 054011, (2009)
[54] F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, arXiv:1412.1090 [INSPIRE]. · Zbl 1388.81456
[55] F. M. Haehl, R. Loganayagam and M. Rangamani, Adiabaticity and KMS gauge invariance, work in progress. · Zbl 1380.81369
[56] Loganayagam, R., Entropy current in conformal hydrodynamics, JHEP, 05, 087, (2008)
[57] Rangamani, M., Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav., 26, 224003, (2009) · Zbl 1181.83005
[58] Read, N., Non-abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x) + ip(y) paired superfluids, Phys. Rev., B 79, 045308, (2009)
[59] Wen, XG; Zee, A., Shift and spin vector: new topological quantum numbers for the Hall fluids, Phys. Rev. Lett., 69, 953, (1992)
[60] Golkar, S.; Roberts, MM; Son, DT, Effective field theory of relativistic quantum Hall systems, JHEP, 12, 138, (2014)
[61] S. Golkar, M.M. Roberts and D.T. Son, The Euler current and relativistic parity odd transport, arXiv:1407.7540 [INSPIRE]. · Zbl 1388.83250
[62] R. Bertlmann, Anomalies in quantum field theory, International series of monographs on physics volume 91, Oxford University Press, Oxford U.K. (1996).
[63] J.A. Harvey, TASI 2003 lectures on anomalies, hep-th/0509097 [INSPIRE].
[64] Bhattacharyya, S.; etal., Local fluid dynamical entropy from gravity, JHEP, 06, 055, (2008)
[65] Bhattacharyya, S.; Loganayagam, R.; Mandal, I.; Minwalla, S.; Sharma, A., Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP, 12, 116, (2008) · Zbl 1329.83103
[66] S. Dubovsky, private communication.
[67] Baier, R.; Romatschke, P.; Son, DT; Starinets, AO; Stephanov, MA, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP, 04, 100, (2008) · Zbl 1246.81352
[68] Jensen, K.; etal., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP, 05, 102, (2012)
[69] Delacrétaz, LV; Nicolis, A.; Penco, R.; Rosen, RA, Wess-Zumino terms for relativistic fluids, superfluids, solids and supersolids, Phys. Rev. Lett., 114, 091601, (2015)
[70] Shaverin, E.; Yarom, A., Universality of second order transport in Gauss-Bonnet gravity, JHEP, 04, 013, (2013) · Zbl 1342.83306
[71] A. Yarom, private communication.
[72] Grozdanov, S.; Starinets, AO, On the universal identity in second order hydrodynamics, JHEP, 03, 007, (2015) · Zbl 1388.83349
[73] Iyer, V.; Wald, RM, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev., D 50, 846, (1994)
[74] Loganayagam, R., Anomalies and the helicity of the thermal state, JHEP, 11, 205, (2013)
[75] Azeyanagi, T.; Loganayagam, R.; Ng, GS; Rodriguez, MJ, Holographic thermal helicity, JHEP, 08, 040, (2014)
[76] Pietro, L.; Komargodski, Z., Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP, 12, 031, (2014) · Zbl 1390.81586
[77] Callan, CG; Harvey, JA, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys., B 250, 427, (1985)
[78] K. Jensen, R. Loganayagam and A. Yarom, to appear.
[79] Schwinger, JS, Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407, (1961) · Zbl 0098.43503
[80] Keldysh, LV, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz., 47, 1515, (1964)
[81] Chou, K-c; Su, Z-b; Hao, B-l; Yu, L., Equilibrium and nonequilibrium formalisms made unified, Phys. Rept., 118, 1, (1985)
[82] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014, (2006)
[83] Kovtun, P.; Moore, GD; Romatschke, P., Towards an effective action for relativistic dissipative hydrodynamics, JHEP, 07, 123, (2014)
[84] S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, arXiv:1305.3670 [INSPIRE].
[85] S. Grozdanov and J. Polonyi, Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles, arXiv:1501.06620 [INSPIRE].
[86] Bhattacharyya, S.; David, JR; Thakur, S., Second order transport from anomalies, JHEP, 01, 010, (2014)
[87] Kovtun, P.; Son, DT; Starinets, AO, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601, (2005)
[88] Plewa, G.; Spalinski, M., On the gravity dual of strongly coupled charged plasma, JHEP, 05, 002, (2013)
[89] Haack, M.; Yarom, A., Universality of second order transport coefficients from the gauge-string duality, Nucl. Phys., B 813, 140, (2009) · Zbl 1194.81207
[90] Nickel, D.; Son, DT, Deconstructing holographic liquids, New J. Phys., 13, 075010, (2011)
[91] Arnold, PB; Moore, GD; Yaffe, LG, Transport coefficients in high temperature gauge theories. 1. leading log results, JHEP, 11, 001, (2000)
[92] Arnold, PB; Moore, GD; Yaffe, LG, Transport coefficients in high temperature gauge theories. 2. beyond leading log, JHEP, 05, 051, (2003)
[93] Moore, GD; Sohrabi, KA, Thermodynamical second-order hydrodynamic coefficients, JHEP, 11, 148, (2012)
[94] Manes, JL; Valle, M., Parity violating gravitational response and anomalous constitutive relations, JHEP, 01, 008, (2013)
[95] Mañes, JL; Valle, M., Parity odd equilibrium partition function in 2 + 1 dimensions, JHEP, 11, 178, (2013)
[96] Megias, E.; Valle, M., Second-order partition function of a non-interacting chiral fluid in 3 + 1 dimensions, JHEP, 11, 005, (2014)
[97] A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cambridge U.K. (2011). · Zbl 1267.82003
[98] Iyer, V., Lagrangian perfect fluids and black hole mechanics, Phys. Rev., D 55, 3411, (1997)
[99] Saremi, O.; Son, DT, Hall viscosity from gauge/gravity duality, JHEP, 04, 091, (2012) · Zbl 1348.81325
[100] Buchel, A.; Myers, RC; Sinha, A., Beyond eta/s = 1/4π, JHEP, 03, 084, (2009)
[101] Cremonini, S., The shear viscosity to entropy ratio: a status report, Mod. Phys. Lett., B 25, 1867, (2011) · Zbl 1262.83003
[102] Kanitscheider, I.; Skenderis, K., Universal hydrodynamics of non-conformal branes, JHEP, 04, 062, (2009)
[103] David, JR; Mahato, M.; Wadia, SR, Hydrodynamics from the D1-brane, JHEP, 04, 042, (2009)
[104] David, JR; Mahato, M.; Thakur, S.; Wadia, SR, Hydrodynamics of R-charged D1-branes, JHEP, 01, 014, (2011) · Zbl 1218.81087
[105] Bigazzi, F.; Cotrone, AL, An elementary stringy estimate of transport coefficients of large temperature QCD, JHEP, 08, 128, (2010) · Zbl 1290.81163
[106] Tachikawa, Y., Black hole entropy in the presence of Chern-Simons terms, Class. Quant. Grav., 24, 737, (2007) · Zbl 1170.83424
[107] T. Azeyanagi, R. Loganayagam and G.S. Ng, Anomalies, Chern-Simons terms and black hole entropy, to appear. · Zbl 1388.83044
[108] Iqbal, N.; Liu, H., Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev., D 79, 025023, (2009)
[109] Bhattacharya, J.; Bhattacharyya, S.; Minwalla, S.; Yarom, A., A theory of first order dissipative superfluid dynamics, JHEP, 05, 147, (2014)
[110] Sonner, J.; Withers, B., A gravity derivation of the tisza-Landau model in AdS/CFT, Phys. Rev., D 82, 026001, (2010)
[111] Herzog, CP; Lisker, N.; Surowka, P.; Yarom, A., Transport in holographic superfluids, JHEP, 08, 052, (2011) · Zbl 1298.81299
[112] Bhattacharya, J.; Bhattacharyya, S.; Minwalla, S., Dissipative superfluid dynamics from gravity, JHEP, 04, 125, (2011)
[113] Hohenberg, PC; Halperin, BI, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.