×

zbMATH — the first resource for mathematics

T-duality as coordinates permutation in double space for weakly curved background. (English) Zbl 1388.81425
Summary: In the paper [the author, “T-duality as permutation of coordinates in double space”, Chin. Phys. C 41, No. 5, Article ID 053101, 10 p. (2017; doi:10.1088/1674-1137/41/5/053101)] we showed that in double space, where all initial coordinates \(x^{\mu}\) are doubled \(x^{\mu} y_{\mu}\), the T-duality transformations can be performed by exchanging places of some coordinates \(x^a\) and corresponding dual coordinates \(y_a\). Here we generalize this result to the case of weakly curved background where in addition to the extended coordinate we will also transform extended argument of background fields with the same operator \(\widehat{\mathcal{T}}^a \). So, in the weakly curved background T-duality leads to the physically equivalent theory and complete set of T-duality transformations form the same group as in the flat background. Therefore, the double space represent all T-dual theories in unified manner.

MSC:
81T20 Quantum field theory on curved space or space-time backgrounds
PDF BibTeX Cite
Full Text: DOI
References:
[1] B. Sazdović, T-duality as coordinates permutation in double space, arXiv:1501.01024 [INSPIRE].
[2] Buscher, TH, A symmetry of the string background field equations, Phys. Lett., B 194, 59, (1987)
[3] Buscher, TH, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett., B 201, 466, (1988)
[4] Roček, M.; Verlinde, EP, Duality, quotients and currents, Nucl. Phys., B 373, 630, (1992)
[5] Giveon, A.; Porrati, M.; Rabinovici, E., Target space duality in string theory, Phys. Rept., 244, 77, (1994)
[6] Alvarez, E.; Álvarez-Gaumé, L.; Barbon, JLF; Lozano, Y., Some global aspects of duality in string theory, Nucl. Phys., B 415, 71, (1994) · Zbl 1007.81529
[7] Davidović, L.; Sazdović, B., T-duality in a weakly curved background, Eur. Phys. J., C 74, 2683, (2014)
[8] L. Davidović, B. Nikolić and B. Sazdović, T-duality diagram for a weakly curved background, arXiv:1406.5364 [INSPIRE].
[9] Lüst, D., T-duality and closed string non-commutative (doubled) geometry, JHEP, 12, 084, (2010) · Zbl 1294.81255
[10] Andriot, D.; Larfors, M.; Lüst, D.; Patalong, P., (non-)commutative closed string on T-dual toroidal backgrounds, JHEP, 06, 021, (2013) · Zbl 1342.81630
[11] Davidović, L.; Nikolić, B.; Sazdović, B., Canonical approach to the closed string non-commutativity, Eur. Phys. J., C 74, 2734, (2014)
[12] Duff, MJ, Duality rotations in string theory, Nucl. Phys., B 335, 610, (1990) · Zbl 0967.81519
[13] Giveon, A.; Rabinovici, E.; Veneziano, G., Duality in string background space, Nucl. Phys., B 322, 167, (1989)
[14] Hull, CM, A geometry for non-geometric string backgrounds, JHEP, 10, 065, (2005)
[15] Tseytlin, AA, Duality symmetric formulation of string world sheet dynamics, Phys. Lett., B 242, 163, (1990)
[16] Tseytlin, AA, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys., B 350, 395, (1991)
[17] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev., D 48, 2826, (1993)
[18] Siegel, W., Two vierbein formalism for string inspired axionic gravity, Phys. Rev., D 47, 5453, (1993)
[19] Hull, CM, Global aspects of T-duality, gauged σ-models and T-folds, JHEP, 10, 057, (2007)
[20] Hull, CM, Doubled geometry and T-folds, JHEP, 07, 080, (2007)
[21] K. Becker, M. Becker and J. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge University Press, (2007). · Zbl 1123.81001
[22] B. Zwiebach, A First Course in String Theory, Cambridge University Press, (2004). · Zbl 1072.81001
[23] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009)
[24] Hull, C.; Zwiebach, B., The gauge algebra of double field theory and Courant brackets, JHEP, 09, 090, (2009)
[25] Hohm, O.; Hull, C.; Zwiebach, B., Generalized metric formulation of double field theory, JHEP, 08, 008, (2010) · Zbl 1291.81255
[26] Aldazabal, G.; Marques, D.; Núñez, C., Double field theory: A pedagogical review, Class. Quant. Grav., 30, 163001, (2013) · Zbl 1273.83001
[27] Berman, DS; Thompson, DC, Duality symmetric string and M-theory, Phys. Rept., 566, 1, (2014)
[28] Giveon, A.; Roček, M., On nonabelian duality, Nucl. Phys., B 421, 173, (1994) · Zbl 0990.81690
[29] Nikolić, B.; Sazdović, B., D5-brane type-I superstring background fields in terms of type IIB ones by canonical method and T-duality approach, Nucl. Phys., B 836, 100, (2010) · Zbl 1206.81108
[30] Giveon, A.; Malkin, N.; Rabinovici, E., The Riemann surface in the target space and vice versa, Phys. Lett., B 220, 551, (1989)
[31] Alvarez, E.; Osorio, MAR, Duality Is an exact symmetry of string perturbation theory, Phys. Rev., D 40, 1150, (1989)
[32] Andriot, D.; Larfors, M.; Lüst, D.; Patalong, P., A ten-dimensional action for non-geometric fluxes, JHEP, 09, 134, (2011) · Zbl 1301.81178
[33] Hohm, O.; Lüst, D.; Zwiebach, B., The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys., 61, 926, (2013) · Zbl 1338.81328
[34] I. Bakas and D. Lüst, T-duality, Quotients and Currents for Non-Geometric Closed Strings, arXiv:1505.04004 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.