zbMATH — the first resource for mathematics

Towards gauge theories in four dimensions. (English) Zbl 1388.81329
Summary: The abundance of infrared singularities in gauge theories due to unresolved emission of massless particles (soft and collinear) represents the main difficulty in perturbative calculations. They are typically regularized in dimensional regularization, and their subtraction is usually achieved independently for virtual and real corrections. In this paper, we introduce a new method based on the loop-tree duality (LTD) theorem to accomplish the summation over degenerate infrared states directly at the integrand level such that the cancellation of the infrared divergences is achieved simultaneously, and apply it to reference examples as a proof of concept. Ultraviolet divergences, which are the consequence of the point-like nature of the theory, are also reinterpreted physically in this framework. The proposed method opens the intriguing possibility of carrying out purely four-dimensional implementations of higher-order perturbative calculations at next-to-leading order (NLO) and beyond free of soft and final-state collinear subtractions.

81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX Cite
Full Text: DOI
[1] Yang, C-N; Mills, RL, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev., 96, 191, (1954) · Zbl 1378.81075
[2] Bollini, CG; Giambiagi, JJ, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim., B 12, 20, (1972)
[3] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[4] Cicuta, GM; Montaldi, E., Analytic renormalization via continuous space dimension, Lett. Nuovo Cim., 4, 329, (1972)
[5] Ashmore, JF, A method of gauge invariant regularization, Lett. Nuovo Cim., 4, 289, (1972)
[6] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
[7] S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett.B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
[8] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
[9] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].
[10] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
[11] Duca, V.; Duhr, C.; Somogyi, G.; Tramontano, F.; Trócsányi, Z., Higgs boson decay into b-quarks at NNLO accuracy, JHEP, 04, 036, (2015)
[12] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett., B 693, 259, (2010)
[13] Boughezal, R.; Focke, C.; Liu, X.; Petriello, F., W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett., 115, 062002, (2015)
[14] Gaunt, J.; Stahlhofen, M.; Tackmann, FJ; Walsh, JR, N-jettiness subtractions for NNLO QCD calculations, JHEP, 09, 058, (2015)
[15] Catani, S.; Gleisberg, T.; Krauss, F.; Rodrigo, G.; Winter, J-C, From loops to trees by-passing feynman’s theorem, JHEP, 09, 065, (2008) · Zbl 1245.81117
[16] Bierenbaum, I.; Catani, S.; Draggiotis, P.; Rodrigo, G., A tree-loop duality relation at two loops and beyond, JHEP, 10, 073, (2010) · Zbl 1291.81381
[17] Bierenbaum, I.; Buchta, S.; Draggiotis, P.; Malamos, I.; Rodrigo, G., Tree-loop duality relation beyond simple poles, JHEP, 03, 025, (2013)
[18] Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G., On the singular behaviour of scattering amplitudes in quantum field theory, JHEP, 11, 014, (2014) · Zbl 1333.81149
[19] S. Buchta, Theoretical foundations and applications of the Loop-Tree Duality in Quantum Field Theories, Ph.D. Thesis, Universitat de València, (2015), arXiv:1509.07167 [INSPIRE].
[20] Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G., Towards a numerical implementation of the loop-tree duality method, Nucl. Part. Phys. Proc., 258-259, 33, (2015)
[21] S. Buchta, G. Chachamis, P. Draggiotis and G. Rodrigo, Numerical implementation of the Loop-Tree Duality method, arXiv:1510.00187 [INSPIRE]. · Zbl 1333.81149
[22] G.F.R. Sborlini, R. Hernandez-Pinto and G. Rodrigo, From dimensional regularization to NLO computations in four dimensions, PoS(EPS-HEP2015)479 [arXiv:1510.01079] [INSPIRE].
[23] D.E. Soper, QCD calculations by numerical integration, Phys. Rev. Lett.81 (1998) 2638 [hep-ph/9804454] [INSPIRE].
[24] Pittau, R., A four-dimensional approach to quantum field theories, JHEP, 11, 151, (2012) · Zbl 1397.81177
[25] Donati, AM; Pittau, R., gauge invariance at work in FDR: Hγγ, JHEP, 04, 167, (2013) · Zbl 1342.81275
[26] Fazio, RA; Mastrolia, P.; Mirabella, E.; Torres Bobadilla, WJ, On the four-dimensional formulation of dimensionally regulated amplitudes, Eur. Phys. J., C 74, 3197, (2014)
[27] Catani, S.; Florian, D.; Rodrigo, G., Space-like (versus time-like) collinear limits in QCD: Is factorization violated?, JHEP, 07, 026, (2012)
[28] Becker, S.; Reuschle, C.; Weinzierl, S., Numerical NLO QCD calculations, JHEP, 12, 013, (2010) · Zbl 1294.81267
[29] G. Rodrigo et al., IFIC/15-73 in preparation.
[30] G.F.R. Sborlini, Loop-tree duality and quantum field theory in four dimensions, PoS(RADCOR2015)082 [arXiv:1601.04634] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.