×

zbMATH — the first resource for mathematics

Sigma models for genuinely non-geometric backgrounds. (English) Zbl 1388.81168
Summary: The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.

MSC:
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shelton, J.; Taylor, W.; Wecht, B., Nongeometric flux compactifications, JHEP, 10, 085, (2005)
[2] Aldazabal, G.; Camara, PG; Font, A.; Ibáñez, LE, More dual fluxes and moduli fixing, JHEP, 05, 070, (2006)
[3] Halmagyi, N., Non-geometric string backgrounds and worldsheet algebras, JHEP, 07, 137, (2008)
[4] N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].
[5] Blumenhagen, R.; Deser, A.; Plauschinn, E.; Rennecke, F., Palatini-Lovelock-Cartan gravity — Bianchi identities for stringy fluxes, Class. Quant. Grav., 29, 135004, (2012) · Zbl 1248.83104
[6] Mylonas, D.; Schupp, P.; Szabo, RJ, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP, 09, 012, (2012) · Zbl 1397.81409
[7] Blumenhagen, R.; Deser, A.; Plauschinn, E.; Rennecke, F.; Schmid, C., The intriguing structure of non-geometric frames in string theory, Fortsch. Phys., 61, 893, (2013) · Zbl 1338.81315
[8] Chatzistavrakidis, A.; Jonke, L.; Lechtenfeld, O., Dirac structures on nilmanifolds and coexistence of fluxes, Nucl. Phys., B 883, 59, (2014) · Zbl 1323.81077
[9] M. Gualtieri, Generalized complex geometry, DPhil thesis, Oxford University, Oxford U.K. (2003) [math.DG/0401221] [INSPIRE]. · Zbl 1235.32020
[10] Hull, CM, A geometry for non-geometric string backgrounds, JHEP, 10, 065, (2005)
[11] Dabholkar, A.; Hull, C., Generalised T-duality and non-geometric backgrounds, JHEP, 05, 009, (2006)
[12] Hull, CM; Reid-Edwards, RA, Gauge symmetry, T-duality and doubled geometry, JHEP, 08, 043, (2008)
[13] Hull, CM; Reid-Edwards, RA, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP, 09, 014, (2009)
[14] Narain, KS; Sarmadi, MH; Vafa, C., Asymmetric orbifolds, Nucl. Phys., B 288, 551, (1987)
[15] Hellerman, S.; McGreevy, J.; Williams, B., Geometric constructions of nongeometric string theories, JHEP, 01, 024, (2004) · Zbl 1243.81156
[16] S. Hellerman and J. Walcher, Worldsheet CFTs for flat monodrofolds, hep-th/0604191 [INSPIRE].
[17] Schulgin, W.; Troost, J., Backreacted T-folds and non-geometric regions in configuration space, JHEP, 12, 098, (2008) · Zbl 1329.81325
[18] Condeescu, C.; Florakis, I.; Lüst, D., Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP, 04, 121, (2012) · Zbl 1348.81362
[19] Condeescu, C.; Florakis, I.; Kounnas, C.; Lüst, D., Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFT’s, JHEP, 10, 057, (2013) · Zbl 1342.83463
[20] J. McOrist, D.R. Morrison and S. Sethi, Geometries, non-geometries and fluxes, Adv. Theor. Math. Phys.14 (2010) [arXiv:1004.5447] [INSPIRE]. · Zbl 1241.81134
[21] Boer, J.; Shigemori, M., Exotic branes in string theory, Phys. Rept., 532, 65, (2013) · Zbl 1356.81193
[22] Dibitetto, G.; Fernandez-Melgarejo, JJ; Marques, D.; Roest, D., Duality orbits of non-geometric fluxes, Fortsch. Phys., 60, 1123, (2012) · Zbl 1255.83125
[23] Liu, Z-J; Weinstein, A.; Xu, P., Manin triples for Lie bialgebroids, J. Diff. Geom., 45, 547, (1997) · Zbl 0885.58030
[24] Liu, Z-J; Weinstein, A.; Xu, P., Dirac structures and Poisson homogeneous spaces, Commun. Math. Phys., 192, 121, (1998) · Zbl 0921.58074
[25] Courant, T., Dirac manifolds, Trans. Amer. Math. Soc., 319, 631, (1990) · Zbl 0850.70212
[26] D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. thesis, UC Berkeley, Berkeley U.S.A. (1999) [math.DG/9910078].
[27] Roytenberg, D., A note on quasi Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., 61, 123, (2002) · Zbl 1027.53104
[28] Roytenberg, D., AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys., 79, 143, (2007) · Zbl 1125.81040
[29] Alexandrov, M.; Kontsevich, M.; Schwartz, A.; Zaboronsky, O., The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys., A 12, 1405, (1997) · Zbl 1073.81655
[30] N. Ikeda, Lectures on AKSZ topological field theories for physicists, arXiv:1204.3714 [INSPIRE].
[31] Bursztyn, H.; Crainic, M.; Ševera, P., Quasi-Poisson structures as Dirac structures, Travaux mathématiques, 16, 41, (2005) · Zbl 1095.53055
[32] Ševera, P.; Weinstein, A., Poisson geometry with a 3-form background, Prog. Theor. Phys. Suppl., 144, 145, (2001) · Zbl 1029.53090
[33] C. Hofman and J.-S. Park, Topological open membranes, hep-th/0209148 [INSPIRE].
[34] Tseytlin, AA, Duality symmetric formulation of string world sheet dynamics, Phys. Lett., B 242, 163, (1990)
[35] Tseytlin, AA, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys., B 350, 395, (1991)
[36] Siegel, W., Two vierbein formalism for string inspired axionic gravity, Phys. Rev., D 47, 5453, (1993)
[37] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev., D 48, 2826, (1993)
[38] W. Siegel, Manifest duality in low-energy superstrings, in Proceedings, Strings ’93, Berkeley CA U.S.A. (1993), pg. 353 and State U. ITP-SB-93-050, Stony Brook NY U.S.A. (1993) [hep-th/9308133] [INSPIRE].
[39] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009)
[40] Hohm, O.; Hull, C.; Zwiebach, B., Background independent action for double field theory, JHEP, 07, 016, (2010) · Zbl 1290.81069
[41] Hohm, O.; Hull, C.; Zwiebach, B., Generalized metric formulation of double field theory, JHEP, 08, 008, (2010) · Zbl 1291.81255
[42] Aldazabal, G.; Marques, D.; Núñez, C., Double field theory: a pedagogical review, Class. Quant. Grav., 30, 163001, (2013) · Zbl 1273.83001
[43] Berman, DS; Thompson, DC, Duality symmetric string and M-theory, Phys. Rept., 566, 1, (2014)
[44] Hohm, O.; Lüst, D.; Zwiebach, B., The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys., 61, 926, (2013) · Zbl 1338.81328
[45] Blumenhagen, R.; Hassler, F.; Lüst, D., Double field theory on group manifolds, JHEP, 02, 001, (2015) · Zbl 1388.81401
[46] R. Blumenhagen, P.d. Bosque, F. Hassler and D. Lüst, Generalized metric formulation of double field theory on group manifolds, JHEP08 (2015) 056 [arXiv:1502.02428] [INSPIRE]. · Zbl 1388.81492
[47] Berman, DS; Copland, NB; Thompson, DC, Background field equations for the duality symmetric string, Nucl. Phys., B 791, 175, (2008) · Zbl 1225.81111
[48] Dall’Agata, G.; Prezas, N., Worldsheet theories for non-geometric string backgrounds, JHEP, 08, 088, (2008)
[49] Avramis, SD; Derendinger, J-P; Prezas, N., Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys., B 827, 281, (2010) · Zbl 1203.81131
[50] G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP11 (2011) 052 [Erratum ibid.11 (2011) 109] [arXiv:1109.0290] [INSPIRE]. · Zbl 1306.81178
[51] Geissbuhler, D., Double field theory and N = 4 gauged supergravity, JHEP, 11, 116, (2011) · Zbl 1306.81227
[52] Geissbuhler, D.; Marques, D.; Núñez, C.; Penas, V., Exploring double field theory, JHEP, 06, 101, (2013) · Zbl 1342.83368
[53] Blumenhagen, R.; Gao, X.; Herschmann, D.; Shukla, P., Dimensional oxidation of non-geometric fluxes in type II orientifolds, JHEP, 10, 201, (2013)
[54] Andriot, D.; Larfors, M.; Lüst, D.; Patalong, P., A ten-dimensional action for non-geometric fluxes, JHEP, 09, 134, (2011) · Zbl 1301.81178
[55] Andriot, D.; Hohm, O.; Larfors, M.; Lüst, D.; Patalong, P., Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys., 60, 1150, (2012) · Zbl 1255.83123
[56] Berman, DS; Musaev, ET; Thompson, DC; Thompson, DC, Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP, 10, 174, (2012) · Zbl 1397.83178
[57] Andriot, D.; Betz, A., Β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP, 12, 083, (2013)
[58] Deser, A.; Stasheff, J., Even symplectic supermanifolds and double field theory, Commun. Math. Phys., 339, 1003, (2015) · Zbl 1356.53076
[59] Y. Kosmann-Schwarzbach, Quasi, twisted, and all that… In Poisson geometry and Lie algebroid theory, in The breadth of symplectic and Poisson geometry, Progr. Math.232 (2005) 363 [math.SG/0310359].
[60] Mackenzie, KCH; Xu, P., Lie bialgebroids and Poisson groupoids, Duke Math. J., 73, 415, (1994) · Zbl 0844.22005
[61] Chatzistavrakidis, A., Phase space quantization, noncommutativity and the gravitational field, Phys. Rev., D 90, 024038, (2014)
[62] Rieffel, MA, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys., 122, 531, (1989) · Zbl 0679.46055
[63] Cattaneo, AS; Qiu, J.; Zabzine, M., 2D and 3D topological field theories for generalized complex geometry, Adv. Theor. Math. Phys., 14, 695, (2010) · Zbl 1206.81118
[64] Kotov, A.; Schaller, P.; Strobl, T., Dirac σ-models, Commun. Math. Phys., 260, 455, (2005) · Zbl 1088.81085
[65] Salnikov, V.; Strobl, T., Dirac σ-models from gauging, JHEP, 11, 110, (2013)
[66] Klimčík, C.; Strobl, T., WZW-Poisson manifolds, J. Geom. Phys., 43, 341, (2002) · Zbl 1027.70023
[67] Bouwknegt, P.; Evslin, J.; Mathai, V., T duality: topology change from H flux, Commun. Math. Phys., 249, 383, (2004) · Zbl 1062.81119
[68] Bouwknegt, P.; Evslin, J.; Mathai, V., On the topology and H flux of T dual manifolds, Phys. Rev. Lett., 92, 181601, (2004) · Zbl 1267.81264
[69] Bursztyn, H.; Cavalcanti, GR; Gualtieri, M., Reduction of Courant algebroids and generalized complex structures, Adv. Math., 211, 726, (2007) · Zbl 1115.53056
[70] G.R. Cavalcanti and M. Gualtieri, Generalized complex geometry and T-duality, arXiv:1106.1747 [INSPIRE]. · Zbl 1200.53062
[71] Ševera, P., Poisson-Lie T-duality and Courant algebroids, Lett. Math. Phys., 105, 1689, (2015) · Zbl 1344.53064
[72] Cavalcanti, GR; Gualtieri, M., Generalized complex structures on nilmanifolds, J. Symplectic Geom., 2, 393, (2004) · Zbl 1079.53106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.