×

Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. (English) Zbl 1388.81094

Summary: We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindlerwedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed in [A. Almheiri et al., J. High Energy Phys. 2015, No. 4, Paper No. 163, 34 p. (2015; Zbl 1388.81095)].

MSC:

81P70 Quantum coding (general)
94B05 Linear codes (general theory)

Citations:

Zbl 1388.81095
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE]. · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[2] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. · doi:10.1088/1126-6708/2003/04/021
[3] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[4] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · doi:10.1088/1126-6708/2006/08/045
[5] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[6] M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev.D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].
[7] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. · Zbl 1359.81171
[8] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.42 (2010) 2323 [arXiv:1005.3035] [INSPIRE]. · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[9] P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev.D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
[10] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE]. · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[11] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE]. · Zbl 1338.83057 · doi:10.1002/prop.201300020
[12] N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP04 (2014) 195 [arXiv:1308.3716] [INSPIRE]. · doi:10.1007/JHEP04(2014)195
[13] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett.91 (2003) 147902 [quant-ph/0301063].
[14] F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066 [INSPIRE]. · Zbl 1181.82010
[15] F. Verstraete, J. Cirac and V. Murg, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys.57 (2008) 143 [arXiv:0907.2796]. · doi:10.1080/14789940801912366
[16] G. Vidal, Entanglement renormalization, Phys. Rev. Lett.99 (2007) 220405 [cond-mat/0512165] [INSPIRE]. · doi:10.1103/PhysRevLett.99.220405
[17] G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett.101 (2008) 110501 [INSPIRE]. · doi:10.1103/PhysRevLett.101.110501
[18] G. Evenbly and G. Vidal, Entanglement renormalization in two spatial dimensions, Phys. Rev. Lett.102 (2009) 180406 [arXiv:0811.0879] [INSPIRE]. · doi:10.1103/PhysRevLett.102.180406
[19] G. Evenbly and G. Vidal, Algorithms for entanglement renormalization, Phys. Rev.B 79 (2009) 144108 [arXiv:0707.1454]. · doi:10.1103/PhysRevB.79.144108
[20] G. Evenbly and G. Vidal, Frustrated antiferromagnets with entanglement renormalization: ground state of the spin-1/2 Heisenberg model on a Kagome lattice, Phys. Rev. Lett.104 (2010) 187203 [arXiv:0904.3383] [INSPIRE]. · doi:10.1103/PhysRevLett.104.187203
[21] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
[22] B. Swingle, Entanglement renormalization and holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
[23] B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
[24] B. Yoshida, Information storage capacity of discrete spin systems, Annals Phys.338 (2013) 134 [arXiv:1111.3275] [INSPIRE]. · Zbl 1348.82026 · doi:10.1016/j.aop.2013.07.009
[25] J.I. Latorre and G. Sierra, Holographic codes, arXiv:1502.06618 [INSPIRE].
[26] A.J. Ferris and D. Poulin, Tensor networks and quantum error correction, Phys. Rev. Lett.113 (2014) 030501 [arXiv:1312.4578]. · doi:10.1103/PhysRevLett.113.030501
[27] D. Bacon, S.T. Flammia, A.W. Harrow and J. Shi, Sparse quantum codes from quantum circuits, arXiv:1411.3334. · Zbl 1321.81018
[28] X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
[29] W. Helwig, W. Cui, A. Riera, J.I. Latorre and H.-K. Lo, Absolute maximal entanglement and quantum secret sharing, Phys. Rev.A 86 (2012) 052335 [arXiv:1204.2289] [INSPIRE]. · doi:10.1103/PhysRevA.86.052335
[30] W. Helwig, Absolutely maximally entangled qudit graph states, arXiv:1306.2879.
[31] R. Cleve, D. Gottesman and H.-K. Lo, How to share a quantum secret, Phys. Rev. Lett.83 (1999) 648 [quant-ph/9901025] [INSPIRE]. · doi:10.1103/PhysRevLett.83.648
[32] J. Weeks, KaleidoTile. A computer program for creating spherical, Euclidean and hyperbolic tilings, http://www.geometrygames.org/KaleidoTile.
[33] C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity, Courier Corporation, (1998). · Zbl 0944.90066
[34] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev.D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].
[35] I.A. Morrison, Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, JHEP05 (2014) 053 [arXiv:1403.3426] [INSPIRE]. · doi:10.1007/JHEP05(2014)053
[36] D. Kribs, R. Laflamme and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett.94 (2005) 180501 [quant-ph/0412076]. · doi:10.1103/PhysRevLett.94.180501
[37] D.W. Kribs, R. Laflamme, D. Poulin and M. Lesosky, Operator quantum error correction, Quant. Inf. Comp.6 (2006) 383 [quant-ph/0504189]. · Zbl 1152.81760
[38] C. Bény, A. Kempf and D. Kribs, Quantum error correction of observables, Phys. Rev.A 76 (2007) 042303 [arXiv:0705.1574]. · doi:10.1103/PhysRevA.76.042303
[39] C. Bény, A. Kempf and D. Kribs, Generalization of quantum error correction via the Heisenberg picture, Phys. Rev. Lett.98 (2007) 100502 [quant-ph/0608071].
[40] M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE]. · doi:10.1007/JHEP12(2014)162
[41] A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE]. · Zbl 1304.81139 · doi:10.1088/0264-9381/31/22/225007
[42] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE]. · Zbl 1248.83029 · doi:10.1088/0264-9381/29/15/155009
[43] D.L. Jafferis and S.J. Suh, The gravity duals of modular hamiltonians, arXiv:1412.8465 [INSPIRE]. · Zbl 1390.83115
[44] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, arXiv:0904.2557. · Zbl 1211.81043
[45] E. Mintun, J. Polchinski and V. Rosenhaus, Bulk-boundary duality, gauge invariance and quantum error correction, arXiv:1501.06577 [INSPIRE].
[46] S. Bravyi and B. Terhal, A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes, New J. Phys.11 (2009) 043029 [arXiv:0810.1983]. · doi:10.1088/1367-2630/11/4/043029
[47] F. Pastawski and B. Yoshida, Fault-tolerant logical gates in quantum error-correcting codes, Phys. Rev.A 91 (2015) 012305 [arXiv:1408.1720]. · doi:10.1103/PhysRevA.91.012305
[48] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP02 (2013) 062 [arXiv:1207.3123] [INSPIRE]. · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[49] D. Harlow, Jerusalem lectures on black holes and quantum information, arXiv:1409.1231 [INSPIRE].
[50] J.D. Bekenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333 [INSPIRE]. · Zbl 1369.83037
[51] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[52] T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE]. · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[53] L. Susskind, Computational complexity and black hole horizons, arXiv:1403.5695 [INSPIRE]. · Zbl 1429.81019
[54] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP03 (2015) 051 [arXiv:1409.8180] [INSPIRE]. · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[55] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error, in Proceedings of the 29thAnnual ACM Symposium on Theory of Computing, (1997), pg. 176 [quant-ph/9906129] [INSPIRE]. · Zbl 0962.68065
[56] M. Grassl, T. Beth and M. Roetteler, On optimal quantum codes, Int. J. Quant. Inf.2 (2004) 55 [quant-ph/0312164]. · Zbl 1116.81012
[57] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett.71 (1993) 1291 [gr-qc/9305007] [INSPIRE]. · Zbl 0972.81504
[58] S. Goldstein, J.L. Lebowitz, R. Tumulka and N. Zanghì, Canonical typicality, Phys. Rev. Lett.96 (2006) 050403 [cond-mat/0511091].
[59] J. Adler, Bootstrap percolation, Phys.A 171 (1991) 453.
[60] D.A. Levin, Y. Peres and E.L. Wilmer, Markov chains and mixing times, American Mathematical Society, U.S.A. (2008).
[61] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2000). · Zbl 1049.81015
[62] N. Schuch, I. Cirac and D. Perez-Garcia, PEPS as ground states: degeneracy and topology, Ann. Phys.325 (2010) 2153 [arXiv:1001.3807]. · Zbl 1198.81063 · doi:10.1016/j.aop.2010.05.008
[63] M.B. ¸ahinoğlu et al., Characterizing topological order with matrix product operators, arXiv:1409.2150.
[64] O. Buerschaper, Twisted injectivity in projected entangled pair states and the classification of quantum phases, Annals Phys.351 (2014) 447 [INSPIRE]. · Zbl 1360.81050 · doi:10.1016/j.aop.2014.09.007
[65] B. Yoshida and I.L. Chuang, Framework for classifying logical operators in stabilizer codes, Phys. Rev.A 81 (2010) 052302 [arXiv:1002.0085]. · doi:10.1103/PhysRevA.81.052302
[66] J. Haah and J. Preskill, Logical-operator tradeoff for local quantum codes, Phys. Rev.A 86 (2012) 032308 [arXiv:1011.3529]. · doi:10.1103/PhysRevA.86.032308
[67] P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.