×

zbMATH — the first resource for mathematics

A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua. (English) Zbl 1388.81013

MSC:
81-08 Computational methods for problems pertaining to quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Vafa, C., Evidence for F-theory, Nucl. Phys., B 469, 403, (1996) · Zbl 1003.81531
[2] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys.B 473 (1996) 74 [hep-th/9602114] [INSPIRE]. · Zbl 0925.14007
[3] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys.B 476 (1996) 437 [hep-th/9603161] [INSPIRE]. · Zbl 0925.14007
[4] Kumar, V.; Morrison, DR; Taylor, W., global aspects of the space of 6D N = 1 supergravities, JHEP, 11, 118, (2010) · Zbl 1294.81212
[5] Morrison, DR; Taylor, W., classifying bases for 6D F-theory models, Central Eur. J. Phys., 10, 1072, (2012)
[6] Morrison, DR; Taylor, W., toric bases for 6D F-theory models, Fortsch. Phys., 60, 1187, (2012) · Zbl 1255.81210
[7] Taylor, W., On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP, 08, 032, (2012) · Zbl 1397.14048
[8] Martini, G.; Taylor, W., 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, JHEP, 06, 061, (2015) · Zbl 1388.83862
[9] Johnson, SB; Taylor, W., Calabi-Yau threefolds with large h\^{2,1}, JHEP, 10, 23, (2014) · Zbl 1333.81384
[10] W. Taylor and Y.-N. Wang, Non-toric Bases for Elliptic Calabi-Yau Threefolds and 6D F-theory Vacua, arXiv:1504.07689 [INSPIRE]. · Zbl 1386.14150
[11] F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [INSPIRE].
[12] Anderson, LB; Taylor, W., Geometric constraints in dual F-theory and heterotic string compactifications, JHEP, 08, 025, (2014)
[13] Grassi, A.; Halverson, J.; Shaneson, J.; Taylor, W., Non-higgsable QCD and the standard model spectrum in F-theory, JHEP, 01, 086, (2015) · Zbl 1388.81924
[14] Morrison, DR; Taylor, W., non-higgsable clusters for 4D F-theory models, JHEP, 05, 080, (2015) · Zbl 1388.81871
[15] Halverson, J.; Taylor, W., \( {\text{\mathbb{P}}}^1 \)-bundle bases and the prevalence of non-higgsable structure in 4D F-theory models, JHEP, 09, 086, (2015) · Zbl 1388.81722
[16] Klemm, A.; Lian, B.; Roan, SS; Yau, S-T, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys., B 518, 515, (1998) · Zbl 0920.14016
[17] Mohri, K., F theory vacua in four-dimensions and toric threefolds, Int. J. Mod. Phys., A 14, 845, (1999) · Zbl 0935.81050
[18] Berglund, P.; Mayr, P., Heterotic string / F theory duality from mirror symmetry, Adv. Theor. Math. Phys., 2, 1307, (1999) · Zbl 1041.81570
[19] Grimm, TW; Taylor, W., structure in 6D and 4D N = 1 supergravity theories from F-theory, JHEP, 10, 105, (2012) · Zbl 1397.81249
[20] D.R. Morrison, TASI lectures on compactification and duality, hep-th/0411120 [INSPIRE].
[21] W. Taylor, TASI Lectures on Supergravity and String Vacua in Various Dimensions, arXiv:1104.2051 [INSPIRE].
[22] K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math.77 (1963) 563, 78 (1963) 1. · Zbl 0171.19601
[23] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV, Proceedings of Internat. Summer School, Univ. Antwerp, Antwerp, Belgium, 1972, Lecture Notes in Math.476 (1975) 33.
[24] Bershadsky, M.; Intriligator, KA; Kachru, S.; Morrison, DR; Sadov, V.; Vafa, C., Geometric singularities and enhanced gauge symmetries, Nucl. Phys., B 481, 215, (1996) · Zbl 1049.81581
[25] Katz, S.; Morrison, DR; Schäfer-Nameki, S.; Sully, J., Tate’s algorithm and F-theory, JHEP, 08, 094, (2011) · Zbl 1298.81307
[26] Grassi, A.; Morrison, DR, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys., 6, 51, (2012) · Zbl 1270.81174
[27] W. Fulton. Introduction to toric varieties. No. 131, Princeton University Press, (1993). · Zbl 0813.14039
[28] W.P. Barth, K. Hulek, C.A.M. Peters, A. Van de Ven, Compact complex surfaces, Springer, (2004).
[29] Grassi, A., On minimal models of elliptic threefolds, Math. Ann., 290, 287, (1991) · Zbl 0719.14006
[30] Seiberg, N.; Witten, E., Comments on string dynamics in six-dimensions, Nucl. Phys., B 471, 121, (1996) · Zbl 1003.81535
[31] Seiberg, N., Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett., B 390, 169, (1997)
[32] J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP05 (2014) 028 [Erratum ibid.1506 (2015) 017] [arXiv:1312.5746] [INSPIRE].
[33] Zotto, M.; Heckman, JJ; Morrison, DR; Park, DS, 6D SCFTs and gravity, JHEP, 06, 158, (2015) · Zbl 1387.83031
[34] K. Matsuki, Introduction to the Mori Program, Springer-Verlag, Berlin Germany (2002). · Zbl 0988.14007
[35] Candelas, P.; Diaconescu, D-E; Florea, B.; Morrison, DR; Rajesh, G., Codimension three bundle singularities in F-theory, JHEP, 06, 014, (2002)
[36] Wazir, R., Arithmetic on elliptic threefolds, Compos. Math., 140, 567, (2004) · Zbl 1060.11039
[37] A. Braun, W. Taylor and Y. Wang, to appear.
[38] Lynker, M.; Schimmrigk, R.; Wisskirchen, A., Landau-Ginzburg vacua of string, M-theory and F-theory at c = 12, Nucl. Phys., B 550, 123, (1999) · Zbl 1063.14504
[39] Kreuzer, M.; Skarke, H., Calabi-Yau four folds and toric fibrations, J. Geom. Phys., 26, 272, (1998) · Zbl 0956.14030
[40] http://hep.itp.tuwien.ac.at/∼kreuzer/CY/.
[41] Skarke, H., Weight systems for toric Calabi-Yau varieties and reflexivity of Newton polyhedra, Mod. Phys. Lett., A 11, 1637, (1996) · Zbl 1020.14503
[42] Avram, AC; Kreuzer, M.; Mandelberg, M.; Skarke, H., Searching for K3 fibrations, Nucl. Phys., B 494, 567, (1997) · Zbl 0951.81060
[43] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002) · Zbl 1017.52007
[44] Candelas, P.; Constantin, A.; Skarke, H., An abundance of K3 fibrations from polyhedra with interchangeable parts, Commun. Math. Phys., 324, 937, (2013) · Zbl 1284.14051
[45] Gray, J.; Haupt, AS; Lukas, A., Topological invariants and fibration structure of complete intersection Calabi-Yau four-folds, JHEP, 09, 093, (2014)
[46] L.B. Anderson, F. Apruzzi, X. Gao, J. Gray and S.-J. Lee, A New Construction of Calabi-Yau Manifolds: Generalized CICYs, arXiv:1507.03235 [INSPIRE]. · Zbl 1334.14023
[47] Donagi, R.; Wijnholt, M., Model building with F-theory, Adv. Theor. Math. Phys., 15, 1237, (2011) · Zbl 1260.81194
[48] Beasley, C.; Heckman, JJ; Vafa, C., GUTs and exceptional branes in F-theory - I, JHEP, 01, 058, (2009) · Zbl 1243.81142
[49] Beasley, C.; Heckman, JJ; Vafa, C., GUTs and exceptional branes in F-theory - II: experimental predictions, JHEP, 01, 059, (2009) · Zbl 1243.81141
[50] Grimm, TW, the N = 1 effective action of F-theory compactifications, Nucl. Phys., B 845, 48, (2011) · Zbl 1207.81120
[51] Grimm, TW; Hayashi, H., F-theory fluxes, chirality and Chern-Simons theories, JHEP, 03, 027, (2012) · Zbl 1309.81218
[52] Katz, SH; Vafa, C., Matter from geometry, Nucl. Phys., B 497, 146, (1997) · Zbl 0935.81056
[53] Morrison, DR; Taylor, W., Matter and singularities, JHEP, 01, 022, (2012) · Zbl 1306.81261
[54] Esole, M.; Yau, S-T, small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys., 17, 1195, (2013) · Zbl 1447.81171
[55] Lawrie, C.; Schäfer-Nameki, S., The Tate form on steroids: resolution and higher codimension fibers, JHEP, 04, 061, (2013) · Zbl 1342.81302
[56] Hayashi, H.; Lawrie, C.; Schäfer-Nameki, S., phases, flops and F-theory: SU(5) gauge theories, JHEP, 10, 046, (2013) · Zbl 1342.81289
[57] Hayashi, H.; Lawrie, C.; Morrison, DR; Schäfer-Nameki, S., Box graphs and singular fibers, JHEP, 05, 048, (2014) · Zbl 1333.81369
[58] M. Esole, S.-H. Shao and S.-T. Yau, Singularities and Gauge Theory Phases, arXiv:1402.6331 [INSPIRE]. · Zbl 1428.81123
[59] M. Esole, S.-H. Shao and S.-T. Yau, Singularities and Gauge Theory Phases II, arXiv:1407.1867 [INSPIRE]. · Zbl 1428.81124
[60] A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions I, arXiv:1407.3520 [INSPIRE].
[61] Aspinwall, PS; Morrison, DR; Gross, M., Stable singularities in string theory, Commun. Math. Phys., 178, 115, (1996) · Zbl 0854.53059
[62] A. Grassi, J. Halverson and J.L. Shaneson, Geometry and Topology of String Junctions, arXiv:1410.6817 [INSPIRE]. · Zbl 1346.81110
[63] Braun, V.; Morrison, DR, F-theory on genus-one fibrations, JHEP, 08, 132, (2014) · Zbl 1333.81200
[64] D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE]. · Zbl 1348.83091
[65] Anderson, LB; García-Etxebarria, I.; Grimm, TW; Keitel, J., Physics of F-theory compactifications without section, JHEP, 12, 156, (2014) · Zbl 1333.81299
[66] Mayrhofer, C.; Palti, E.; Till, O.; Weigand, T., Discrete gauge symmetries by higgsing in four-dimensional F-theory compactifications, JHEP, 12, 068, (2014)
[67] Klevers, D.; Mayorga Pena, DK; Oehlmann, P-K; Piragua, H.; Reuter, J., F-theory on all toric hypersurface fibrations and its Higgs branches, JHEP, 01, 142, (2015) · Zbl 1388.81563
[68] Cvetič, M.; Donagi, R.; Klevers, D.; Piragua, H.; Poretschkin, M., F-theory vacua with\( {\mathbb{Z}}_3 \)gauge symmetry, Nucl. Phys., B 898, 736, (2015) · Zbl 1329.81309
[69] D. Morrison, D. Park and W. Taylor, to appear.
[70] Gross, M., A finiteness theorem for elliptic Calabi-Yau threefolds, Duke Math. Jour., 74, 271, (1994) · Zbl 0838.14033
[71] Ashok, S.; Douglas, MR, Counting flux vacua, JHEP, 01, 060, (2004) · Zbl 1243.83060
[72] Denef, F.; Douglas, MR, Distributions of flux vacua, JHEP, 05, 072, (2004)
[73] Braun, AP; Watari, T., Distribution of the number of generations in flux compactifications, Phys. Rev., D 90, 121901, (2014)
[74] Braun, AP; Watari, T., The vertical, the horizontal and the rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications, JHEP, 01, 047, (2015) · Zbl 1388.81495
[75] Watari, T., Statistics of F-theory flux vacua for particle physics, JHEP, 11, 065, (2015)
[76] Douglas, MR; Kachru, S., Flux compactification, Rev. Mod. Phys., 79, 733, (2007) · Zbl 1205.81011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.