zbMATH — the first resource for mathematics

A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows. (English) Zbl 1388.76291
Summary: We compare the lattice Boltzmann equation (LBE) and the gas-kinetic scheme (GKS) applied to 2D incompressible laminar flows. Although both methods are derived from the Boltzmann equation thus share a common kinetic origin, numerically they are rather different. The LBE is a finite difference method, while the GKS is a finite-volume one. In addition, the LBE is valid for near incompressible flows with low-Mach number restriction \(Ma < 0.3\), while the GKS is valid for fully compressible flows. In this study, we use the generalized lattice Boltzmann equation (GLBE) with multiple-relaxation-time (MRT) collision model, which overcomes all the apparent defects in the popular lattice BGK equation. We use both the LBE and GKS methods to simulate the flow past a square block symmetrically placed in a 2D channel with the Reynolds number \(Re\) between 10 and 300. The LBE and GKS results are validated against the well-resolved results obtained using finite-volume method. Our results show that both the LBE and GKS yield quantitatively similar results for laminar flow simulations, and agree well with existing ones, provided that sufficient grid resolution is given. For 2D problems, the LBE is about 10 and 3 times faster than the GKS for steady and unsteady flow calculations, respectively, while the GKS uses less memory. We also observe that the GKS method is much more robust and stable for under-resolved cases due to its upwinding nature and interpolations used in calculating fluxes.

76M28 Particle methods and lattice-gas methods
76M12 Finite volume methods applied to problems in fluid mechanics
PDF BibTeX Cite
Full Text: DOI
[1] B. Van Leer, Computational fluid dynamics: science or toolbox, in: AIAA Paper 2001-2520, 2001.
[2] M. Karttunen, I. Vattulainen, A. Lukkarinen (Eds.), Novel Methods in Soft Matter Simulations, vol. 640 of Lecture Notes in Physics, Springer, Berlin, 2004. · Zbl 1059.11022
[3] Yu, D.; Mei, R.; Luo, L.-S.; Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Prog. aerospace sci., 39, 329-367, (2003)
[4] Xu, K., A gas-kinetic BGK scheme for the navier – stokes equations and its connection with artificial dissipation and Godunov method, J. comput. phys., 171, 1, 289-335, (2001) · Zbl 1058.76056
[5] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys. rev. E, 68, 036706, (2003)
[6] Xu, K.; Lui, S.H., Rayleigh-Bénard simulation using the gas-kinetic bhatnagar – gross – krook scheme in the incompressible limit, Phys. rev. E, 60, 1, 464-470, (1999)
[7] Xu, K., A well-balanced gas-kinetic scheme for the shallow-water equations with source terms, J. comput. phys., 178, 2, 533-562, (2002) · Zbl 1017.76071
[8] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. rev. E, 47, 1815-1819, (1993)
[9] Luo, L.-S., Unified theory of the lattice Boltzmann models for nonideal gases, Phys. rev. lett., 81, 1618-1621, (1998)
[10] Luo, L.-S., Theory of lattice Boltzmann method: lattice Boltzmann models for nonideal gases, Phys. rev. E, 62, 4982-4996, (2000)
[11] Guo, Z.L.; Zhao, T.S., Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids, Phys. rev. E, 68, 035302, (2003)
[12] Luo, L.-S.; Girimaji, S.S., Lattice Boltzmann model for binary mixtures, Phys. rev. E, 66, 035301(R), (2002)
[13] Luo, L.-S.; Girimaji, S.S., Theory of the lattice Boltzmann method: two-fluid model for binary mixtures, Phys. rev. E, 67, 036302, (2003)
[14] Asinari, P., Viscous coupling based lattice Boltzmann model for binary mixtures, Phys. fluid, 17, 6, 067102, (2005) · Zbl 1187.76029
[15] Asinari, P.; Luo, L.-S., A consistent lattice Boltzmann equation with baroclinic coupling for mixtures, J. comput. phys., 227, 8, 3878-3895, (2008) · Zbl 1142.82017
[16] Lian, Y.S.; Xu, K., A gas-kinetic scheme for reactive flows, Comput. fluid, 29, 7, 725-748, (2000) · Zbl 0977.76072
[17] Lian, Y.S.; Xu, K., A gas-kinetic scheme for multimaterial flows and its application in chemical reactions, J. comput. phys., 163, 2, 349-375, (2000) · Zbl 0994.76082
[18] Dellar, P., Lattice kinetic schemes for magnetohydrodynamics, J. comput. phys., 163, 95-126, (2002) · Zbl 1060.76093
[19] Tang, H.Z.; Xu, K., A high-order gas-kinetic method for multidimensional ideal magneto-hydro-dynamics, J. comput. phys., 165, 1, 69-88, (2000) · Zbl 0995.76066
[20] Xu, K., Gas-kinetic theory-based flux splitting method for ideal magneto-hydro-dynamics, J. comput. phys., 153, 2, 334-352, (1999) · Zbl 0946.76067
[21] Guo, Z.L.; Zhao, T.S.; Shi, Y., Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows, J. appl. phys., 99, 074903, (2006)
[22] Verhaeghe, F.; Luo, L.-S.; Blanpain, B., Lattice Boltzmann modelling of microchannel flow in slip flow regime, Phys. fluid, (2006)
[23] Xu, K., Super-Burnett solutions for Poiseuille flow, Phys. fluid, 15, 2077-2080, (2003) · Zbl 1186.76579
[24] Xu, K.; Li, Z.H., Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions, J. fluid mech., 513, 87-110, (2004) · Zbl 1107.76070
[25] Xu, K.; He, X.Y., Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations, J. comput. phys., 190, 1, 100-117, (2003) · Zbl 1236.76052
[26] Bhatnagar, P.L.; Gross, E.P.; Krook, M., A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys. rev., 94, 511-525, (1954) · Zbl 0055.23609
[27] Qian, Y.; d’Humières, D.; Lallemand, P., Lattice BGK models for navier – stokes equation, Europhys. lett., 17, 479-484, (1992) · Zbl 1116.76419
[28] Chen, H.; Chen, S.; Matthaeus, H.W., Recovery of the navier – stokes equations using a lattice-gas Boltzmann method, Phys. rev. A, 45, R5339-R5342, (1992)
[29] Ginzburg, I.; d’Humières, D., Multireflection boundary conditions for lattice Boltzmann models, Phys. rev. E, 68, 066614, (2003)
[30] Pan, C.; Luo, L.-S.; Miller, C.T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. fluid, 35, 8/9, 898-909, (2006) · Zbl 1177.76323
[31] D. d’Humières, Generalized lattice-Boltzmann equations, in: B.D. Shizgal, D.P. Weave (Eds.), Rarefied Gas Dynamics: Theory and Simulations, vol. 159 of Prog. Astronaut. Aeronaut., AIAA, Washington, DC, 1992, pp. 450-458.
[32] Breuer, M.; Bernsdorf, J.; Zeiser, T.; Durst, F., Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, Int. J. heat fluid flow, 21, 186-196, (2000)
[33] Chapman, S.; Cowling, T.G., The mathematical theory of non-uniform gases, (1970), Cambridge University Press Cambridge, UK · Zbl 0098.39702
[34] Harris, S., An introduction to the theory of the Boltzmann equation, (2004), Dover Mineola, NY
[35] Grad, H., Principles of the kinetic theory of gases, (), 204-294
[36] Gross, E.P.; Jackson, E.A., Kinetic models and the linearized Boltzmann equation, Phys. fluid, 2, 4, 432-441, (1959) · Zbl 0087.19901
[37] He, X.; Luo, L.-S., A priori derivation of the lattice Boltzmann equation, Phys. rev. E, 55, R6333-R6336, (1997)
[38] He, X.; Luo, L.-S., Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. rev. E, 56, 6811-6817, (1997)
[39] Junk, M.; Klar, A.; Luo, L.-S., Asymptotic analysis of the lattice Boltzmann equation, J. comput. phys., 210, 2, 676-704, (2005) · Zbl 1079.82013
[40] Tannehill, J.C.; Anderson, D.A.; Pletcher, R.H., Computational fluid mechanics and heat transfer, (1997), Taylor & Francis London, UK
[41] Ohwada, T., On the construction of kinetic schemes, J. comput. phys., 177, 156-175, (2002) · Zbl 1007.76048
[42] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. rev. E, 61, 6546-6562, (2000)
[43] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three-dimensions, Philos. trans. R. soc. lond. A, 360, 437-451, (2002) · Zbl 1001.76081
[44] R. Rubinstein, L.-S. Luo, Theory of the lattice Boltzmann equation: symmetry properties of discrete velocity sets, Phys. Rev. E (2008), in press.
[45] Ohwada, T.; Xu, K., The kinetic scheme for the full-Burnett equations, J. comput. phys., 201, 315-332, (2004) · Zbl 1195.76354
[46] Davis, R.W.; Moore, E.F.; Purtell, L.P., A numerical-experimental study of confined flow around rectangular cylinders, Phys. fluid A, 27, 46-59, (1984)
[47] Mukhopadhyay, A.; Biswas, G.; Sundararajan, T., Numerical investigation of confined wakes behind a square cylinder in a channel, Int. J. numer. method fluid, 14, 1473-1484, (1992) · Zbl 0825.76163
[48] Suzuki, H.; Inoue, Y.; Nishimura, T.; Fukutani, F.; Suzuki, K., Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex), Int. J. heat fluid flow, 14, 2-9, (1993)
[49] Ladd, A.J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. theoretical foundation, J. fluid mech., 271, 285-309, (1994) · Zbl 0815.76085
[50] Ladd, A.J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. numerical results, J. fluid mech., 271, 311-339, (1994) · Zbl 0815.76085
[51] Ladd, A.J.C.; Verberg, R., Lattice Boltzmann simulations of particle – fluid suspensions, J. stat. phys., 104, 1191-1251, (2001) · Zbl 1046.76037
[52] Ginzbourg, I.; Adler, P.M., Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. phys. II, 4, 191-214, (1994)
[53] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of Boltzmann-lattice fluid with boundaries, Phys. fluid, 13, 3452-3459, (2001) · Zbl 1184.76068
[54] Mei, R.; Yu, D.; Shyy, W.; Luo, L.-S., Force evaluation in the lattice Boltzmann method involving curved geometry, Phys. rev. E, 65, 041203, (2002)
[55] Torrilhon, M.; Xu, K., Stability and consistency of kinetic upwinding for advection – diffussion equations, IMA J. numer. anal., 26, 4, 686-722, (2006) · Zbl 1148.76041
[56] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible navier – stokes equation, J. stat. phys., 88, 927-944, (1997) · Zbl 0939.82042
[57] Tölke, J.; Krafczyk, M.; Schulz, M.; Rank, E.; Berrios, R., Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK models, Int. J. mod. phys. C, 9, 1143-1157, (1998)
[58] Tölke, J.; Krafczyk, M.; Rank, E., A multigrid solver for the discrete Boltzmann equation, J. stat. phys., 107, 573-591, (2002) · Zbl 1007.82004
[59] Mavriplis, D.J., Multigrid solution of the steady-state lattice Boltzmann equation, Comput. fluid, 35, 793-804, (2006) · Zbl 1177.76318
[60] Guo, Z.L.; Zhao, T.S.; Shi, Y., Preconditioned lattice-Boltzmann method for steady flows, Phys. rev. E, 70, 066706, (2004)
[61] Xu, K.; Mao, M.L.; Tang, L., A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow, J. comput. phys., 203, 2, 405-421, (2005) · Zbl 1143.76553
[62] Sun, C., Simulations of compressible flows with strong shocks by an adaptive lattice Boltzmann model, J. comput. phys., 161, 70-84, (2000) · Zbl 0971.76074
[63] Sun, C., Adaptive lattice Boltzmann model for compressible flows: viscous and conductive properties, Phys. rev. E, 61, 2645-2653, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.