×

Flow in the tail interaction region of a spherically symmetrical and a uniform supersonic gas stream. (English. Russian original) Zbl 1388.76116

Comput. Math. Model. 23, No. 1, 1-13 (2012); translation from Prikl. Mat. Inf. 36, 5-24 (2010).
Summary: The flow in the tail region of two interacting supersonic streams – spherically symmetrical and planeparallel – is simulated on a supercomputer. The numerical solution is obtained by Godunov’s method. Analysis of the solutions reveals the complex structure of the flow, which includes multiple interfering shock wave structures, a near-axial circulation zone, and a near-axial forward flow zone with a velocity deficit. The detection of such a structure is an unexpected result of the simulation procedure, but it is consistent with some computational and experimental studies, where structures have been observed in supersonic jets.

MSC:

76J20 Supersonic flows
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. P. Vasil’kov and I. N. Murzinov, ”Gas ejection from a strongly underexpanded nozzle into an oncoming hypersonic stream,” Izv. AN SSSR, Mekhanika Zhidkosti Gaza, No. 3, 102–107 (1973).
[2] A. M. Agnone, ”Slipstream formed by a supersonic source in hypersonic stream,” AIAA J., 9, No. 7, 1419–1421 (1971). · doi:10.2514/3.6372
[3] V. B. Baranov, K. V. Krasnobaev, and A. G. Kulikovskii, ”A model of interaction of solar wind with interstellar matter,” Dokl. Akad. Nauk SSSR, 194, No. 1, 41–44 (1970).
[4] M. G. Lebedev and I. D. Sandomirskii, ”Collision of supersonic inviscid gas flows,” Vychisl. Metody Programm., Izd. MGU, Moscow, No. 34: 70–81 (1981).
[5] K. I. Babenko and V. V. Rusanov, ”Difference methods for three-dimensional problems of fluid dynamics,” in: Proc. Second All-Union Conf. on Mechanics, Review papers [in Russian], No. 2, Nauka, Moscow (1965), pp. 247-262.
[6] M. G. Lebedev and A. V. Myasnikov, ”Interaction of two supersonic radial gas streams,” Izv. AN SSSR, Mekhanika Zhidkosti Gaza, No. 4, 159–165 (1990). · Zbl 0729.76044
[7] V. B. Baranov, M. G. Lebedev, and M. S. Ruderman, ”Structure of the region of solar wind – interstellar medium interaction and its influence on H atoms penetrating the solar wind,” Astrophys. Space Sci., 66, No. 2, 441–451 (1979). · doi:10.1007/BF00650016
[8] V. B. Baranov, M. K. Ermakov, and M. G. Lebedev, ”Some computation results for a three-component model of solar wind–interstellar medium interaction,” Pis’ma Astron. Zh., 7, No. 6, 372–377 (1981).
[9] V. B. Baranov, M. G. Lebedev, and Yu. G. Malama, ”The influence of the interface between the heliosphere and the local interstellar medium on the penetration of the H atoms to the solar system,” Astrophys. J., 375, No. 1, Pt. 1, 347–351 (1991). · doi:10.1086/170194
[10] V. B. Baranov and M. G. Lebedev, ”Self-consistent fluid dynamic model of solar wind flow past a cometary ionosphere with allowance for the ’loading’ effect,” Pis’ma Astron. Zh., 12, No. 7, 551–556 (1986).
[11] V. B. Baranov and M. G. Lebedev, ”Solar wind flow past a cometary ionosphere,” Astrophys. Space Sci., 147, No. 1, 69–90 (1988). · doi:10.1007/BF00656608
[12] V. B. Baranov and M. G. Lebedev, ”The interaction between the solar wind and the comet P/Halley atmosphere: experimental data versus theoretical predictions,” Astron. Astrophys., 273, 695–706 (1993).
[13] M. G. Lebedev, ”Comet Grigg-Skjellerup atmosphere interaction with the oncoming solar wind,” Astrophys. Space Sci., 274, No. 1–2, 221–230 (2000). · doi:10.1023/A:1026568511203
[14] S. A. Zhekov and A. V. Myasnikov, ”Colliding stellar winds: ’Asymmetric thermal conduction’,” Astrophys. J., 543, L53–L56 (2000). · doi:10.1086/318168
[15] M. G. Lebedev and K. G. Savinov, ”Computation of inviscid gas flows by a finite-difference method,” in: Mathematical Models and Methods [in Russian], Izd. MGU, Moscow (198), pp. 228-246.
[16] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Fluid Dynamics [in Russian], Nauka, Moscow (1976).
[17] P. S. Batchikov, ”Supercomputer simulation of collision of supersonic gas streams,” in: Collection of Abstracts of Best Dissertation of the Faculty of Computational Mathematics and Cybernetics of Moscow State University for 2009 [in Russian], MAKS Press, Moscow (2009), pp. 20-21.
[18] R. Sauer, Introduction to Fluid Dynamics [Russian translation], Gostekhizdat, Moscow (1947).
[19] G. F. Glotov, ”Local subsonic zones in supersonic jet streams,” Izv. RAN, Mekhanika Zhidkosti Gaza, No. 1, 143–150 (1998).
[20] E. I. Sokolov and N. B. Fedosenko, ”Simulating the formation of steady-state circulation zones in underexpanded supersonic jets ejected into a flooded space and accompanying supersonic stream,” in: XIX TsAGI School-Semi. on Aircraft Aerodynamics, Abstracts of Papers [in Russian], Izd. TsAGI, Moscow (2008), p. 73.
[21] N. V. Guryleva, E. I. Sokolov, and N. B. Fedosenko, ”Investigation of steady-state circulation zones in underexpanded supersonic jets ejected into a flooded space and accompanying supersonic stream,” in: Models and Methods of Aerodynamics, Proc. Eighth Int. School-Seminar, Evpatoriya, 4-16 June 2008 [in Russian], MNTsMO, Moscow (2008), pp. 45–46.
[22] V. A. Goryainov and A. Yu. Molchanov, ”Augmenting the spatial grid in problems of thermal fluid dynamics with fixed computer resources,” Mat. Modelirovanie, 13, No. 8, 3–8 (2001).
[23] V. A. Goryainov, ”On the possibility of flow reversal in free supersonic jets,” Mat. Modelirovanie, 15, No. 97, 86–92 (2003). · Zbl 1091.76029
[24] O. V. Bocharova, Simulating the Ejection of a Supersonic Jet and Its Interaction with a Barrier, Dissertation, Faculty of Computational Mathematics and Cybernetics, Moscow State University (2006).
[25] V. B. Baranov and Yu. G. Malama, ”Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem,” J. Geophys. Res., 98, No. A9, 15,157–15,163 (1993). · doi:10.1029/93JA01171
[26] V. V. Izmodenov and D. B. Aleksashov, ”Model of the tail region of a heliospheric interface,” Pis’ma Astron. Zh., 29, No. 1, 69–75 (2003).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.