×

zbMATH — the first resource for mathematics

A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list. (English) Zbl 1388.53071
Summary: M. Kreuzer and H. Skarke [Adv. Theor. Math. Phys. 4, No. 6, 1209–1230 (2000; Zbl 1017.52007)] famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, in a companion online database (see http://nuweb1.neu.edu/cydatabase), a detailed inventory of these quantities which are of interest to physicists. Many of the singular ambient spaces described by the Kreuzer-Skarke list can be smoothed out into multiple distinct toric ambient spaces describing different Calabi-Yau threefolds. We provide a list of the different Calabi-Yau threefolds which can be obtained from each polytope, up to current computational limits. We then give the details of a variety of quantities associated to each of these Calabi-Yau such as Chern classes, intersection numbers, and the Kähler and Mori cones, in addition to the Hodge data. This data forms a useful starting point for a number of physical applications of the Kreuzer-Skarke list.

MSC:
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to differential geometry
14-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to algebraic geometry
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002) · Zbl 1017.52007
[2] Kaluza, T., On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, 966, (1921)
[3] O. Klein, Quantum theory and five-dimensional theory of relativity (in German and English), Z. Phys.37 (1926) 895 [Surveys High Energ. Phys.5 (1986) 241] [INSPIRE].
[4] Candelas, P.; Horowitz, GT; Strominger, A.; Witten, E., Vacuum configurations for superstrings, Nucl. Phys., B 258, 46, (1985)
[5] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A heterotic standard model, Phys. Lett., B 618, 252, (2005) · Zbl 1247.81349
[6] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A standard model from the E_{8} × E_{8} heterotic superstring, JHEP, 06, 039, (2005)
[7] Bouchard, V.; Donagi, R., An SU(5) heterotic standard model, Phys. Lett., B 633, 783, (2006) · Zbl 1247.81348
[8] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., The exact MSSM spectrum from string theory, JHEP, 05, 043, (2006)
[9] Braun, V.; Candelas, P.; Davies, R.; Donagi, R., The MSSM spectrum from (0, 2)-deformations of the heterotic standard embedding, JHEP, 05, 127, (2012) · Zbl 1348.81435
[10] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and a new heterotic standard model, JHEP, 02, 054, (2010) · Zbl 1270.81146
[11] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, JHEP, 06, 113, (2012) · Zbl 1397.81406
[12] Hubsch, T., Calabi-Yau manifolds: motivations and constructions, Commun. Math. Phys., 108, 291, (1987) · Zbl 0602.53061
[13] Candelas, P.; Dale, AM; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys., B 298, 493, (1988)
[14] Green, P.; Hubsch, T., Calabi-Yau manifolds as complete intersections in products of complex projective spaces, Commun. Math. Phys., 109, 99, (1987) · Zbl 0611.53055
[15] Candelas, P.; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds. 2. three generation manifolds, Nucl. Phys., B 306, 113, (1988)
[16] Brunner, I.; Lynker, M.; Schimmrigk, R., Unification of M-theory and F-theory Calabi-Yau fourfold vacua, Nucl. Phys., B 498, 156, (1997) · Zbl 0973.14509
[17] Gray, J.; Haupt, AS; Lukas, A., All complete intersection Calabi-Yau four-folds, JHEP, 07, 070, (2013) · Zbl 1342.14086
[18] Gray, J.; Haupt, AS; Lukas, A., Topological invariants and fibration structure of complete intersection Calabi-Yau four-folds, JHEP, 09, 093, (2014)
[19] Morrison, DR; Taylor, W., Toric bases for 6D F-theory models, Fortsch. Phys., 60, 1187, (2012) · Zbl 1255.81210
[20] Anderson, LB; Taylor, W., Geometric constraints in dual F-theory and heterotic string compactifications, JHEP, 08, 025, (2014)
[21] Kreuzer, M.; Skarke, H., Reflexive polyhedra, weights and toric Calabi-Yau fibrations, Rev. Math. Phys., 14, 343, (2002) · Zbl 1079.14534
[22] Berglund, P.; Hubsch, T., A generalized construction of mirror manifolds, Nucl. Phys., B 393, 377, (1993) · Zbl 1245.14039
[23] Blumenhagen, R.; Gao, X.; Rahn, T.; Shukla, P., A note on poly-instanton effects in type IIB orientifolds on Calabi-Yau threefolds, JHEP, 06, 162, (2012) · Zbl 1397.81226
[24] Gao, X.; Shukla, P., On classifying the divisor involutions in Calabi-Yau threefolds, JHEP, 11, 170, (2013) · Zbl 1342.81425
[25] Gao, X.; Shukla, P., F-term stabilization of odd axions in LARGE volume scenario, Nucl. Phys., B 878, 269, (2014) · Zbl 1284.81232
[26] Cicoli, M.; Krippendorf, S.; Mayrhofer, C.; Quevedo, F.; Valandro, R., D-branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP, 09, 019, (2012) · Zbl 1397.81228
[27] Cicoli, M.; Kreuzer, M.; Mayrhofer, C., Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications, JHEP, 02, 002, (2012) · Zbl 1309.81149
[28] Cicoli, M.; Conlon, JP; Quevedo, F., General analysis of LARGE volume scenarios with string loop moduli stabilisation, JHEP, 10, 105, (2008) · Zbl 1245.81155
[29] Cicoli, M.; etal., Explicit de Sitter flux vacua for global string models with chiral matter, JHEP, 05, 001, (2014) · Zbl 1333.83178
[30] V. Batyrev and M. Kreuzer, Integral cohomology and mirror symmetry for Calabi-Yau 3-folds, math/0505432 [INSPIRE]. · Zbl 1116.14033
[31] Batyrev, VV, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom., 3, 493, (1994) · Zbl 0829.14023
[32] Kreuzer, M.; Skarke, H., PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun., 157, 87, (2004) · Zbl 1196.14007
[33] M. Kreuzer and H. Skarke, Calabi-Yau data webpage, http://hep.itp.tuwien.ac.at/ kreuzer/CY/.
[34] R. Altman, Toric Calabi-Yau threefold database webpage, http://nuweb1.neu.edu/cydatabase/.
[35] A.P. Braun and N.-O. Walliser, A new offspring of PALP, arXiv:1106.4529 [INSPIRE].
[36] He, Y-H; Lee, S-J; Lukas, A., Heterotic models from vector bundles on toric Calabi-Yau manifolds, JHEP, 05, 071, (2010) · Zbl 1287.81094
[37] He, Y-H; Kreuzer, M.; Lee, S-J; Lukas, A., Heterotic bundles on Calabi-Yau manifolds with small Picard number, JHEP, 12, 039, (2011) · Zbl 1306.81246
[38] He, Y-H; Lee, S-J; Lukas, A.; Sun, C., Heterotic model building: 16 special manifolds, JHEP, 06, 077, (2014)
[39] A.P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALPa user manual, arXiv:1205.4147 [INSPIRE].
[40] Sage Development Team collaboration, W.A. Stein et al., Sage mathematics software (version 5\(.\)12\()\), http://www.sagemath.org/, (2013).
[41] V. Braun, J. Whitney and M. Hampton, Triangulations of a point configuration, http://www.sagemath.org/doc/reference/geometry/sage/geometry/triangulation/point configuration.html.
[42] K. Matsuki, Introduction to the Mori program, Springer, Germany (2002). · Zbl 0988.14007
[43] Cutkosky, S., Elementary contractions of Gorenstein threefolds, Math. Annal., 280, 521, (1988) · Zbl 0616.14003
[44] M. Gross, D. Huybrechts and D. Joyce eds., Calabi-Yau manifolds and related geometries: lectures at a summer school in Nordfjordeid Norway June 2001, Springer, Germany (2003). · Zbl 1001.00028
[45] I.M. Gelfand, M.M. Kapranov and A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston U.S.A. (1994). · Zbl 0827.14036
[46] C.W. Lee, Regular triangulations of convex polytopes, American Mathematical Soc., U.S.A. (1990).
[47] R.R. Thomas, Lectures in geometric combinatorics, volume 33, American Mathematical Soc., U.S.A. (2006). · Zbl 1115.52001
[48] Haase, C.; Nill, B., Lattices generated by skeletons of reflexive polytopes, J. Combinat. Theor., A 115, 340, (2008) · Zbl 1138.14033
[49] Nill, B., Complete toric varieties with reductive automorphism group, Math. Z., 252, 767, (2006) · Zbl 1091.14011
[50] T. Oda, Convex bodies and algebraic geometryan introduction to the theory of toric varieties, in A series of modern surveys in mathematics15, Springer Germany (1985).
[51] J. Rambau. TOPCOM: triangulations of point configurations and oriented matroids, in Mathematical softwareICMS 2002, A.M. Cohen, X.-S. Gao and N. Takayama eds., World Scientific, Singapore (2002), pg. 330. · Zbl 1057.68150
[52] Long, C.; McAllister, L.; McGuirk, P., Heavy tails in Calabi-Yau moduli spaces, JHEP, 10, 187, (2014) · Zbl 1333.81223
[53] Billera, LJ; Filliman, P.; Sturmfels, B., Constructions and complexity of secondary polytopes, Adv. Math., 83, 155, (1990) · Zbl 0714.52004
[54] Berglund, P.; Katz, SH; Klemm, A., Mirror symmetry and the moduli space for generic hypersurfaces in toric varieties, Nucl. Phys., B 456, 153, (1995) · Zbl 0899.32007
[55] Grimm, TW; Hayashi, H., F-theory fluxes, chirality and Chern-Simons theories, JHEP, 03, 027, (2012) · Zbl 1309.81218
[56] S. Reffert, The geometers toolkit to string compactifications, arXiv:0706.1310 [INSPIRE].
[57] Szendröi, B., On a conjecture of Cox and katz, Math. Z., 240, 233, (2002) · Zbl 0999.14012
[58] Szendröi, B., On the ample cone of an ample hypersurface, Asian J. Math., 7, 001, (2003) · Zbl 1087.14008
[59] D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, in Mathematical Surveys and Monographs68, American Mathematical Soc., U.S.A. (1999). · Zbl 0951.14026
[60] Wall, CTC, Classification problems in differential topology. V, Invent. Math., 1, 355, (1966) · Zbl 0149.20601
[61] Ruan, Y., Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J., 83, 461, (1996) · Zbl 0864.53032
[62] Berglund, P.; Katz, SH; Klemm, A.; Mayr, P., New Higgs transitions between dual N = 2 string models, Nucl. Phys., B 483, 209, (1997) · Zbl 0925.14012
[63] R. Altman, J. Gray, Y. He, V. Jejjala, B. Nelson and J. Simon, Exploring the landscape of large volume Calabi-Yau minima, manuscript in preparation, (2014).
[64] Knapp, J.; Kreuzer, M., Toric methods in F-theory model building, Adv. High Energy Phys., 2011, 513436, (2011) · Zbl 1234.81116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.