×

Positive solutions for asymptotically linear problems in exterior domains. (English) Zbl 1388.35020

Authors’ abstract: The existence of a positive solution for a class of asymptotically linear problems in exterior domains is established via a linking argument on the Nehari manifold and by means of a barycenter function.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J61 Semilinear elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Ackermann, N; Clapp, M; Pacella, F, Alternating sign multibump solutions of nonlinear elliptic equations in expanding tubular domains, Commun. Partial Differ. Equ., 38, 751-779, (2013) · Zbl 1273.35132
[2] Akhmediev, N; Ankiewicz, A, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82, 2661-2664, (1999)
[3] Akhmediev, N; Królinowski, W; Snyder, A, Partially coherent solitons of variable shape, Phys. Rev. Lett., 81, 4632-4635, (1998)
[4] Ambrosetti, A; Cerami, G; Ruiz, D, Solitons of linearly coupled systems of semilinear non-autonomous equations on \(R^{n}\), J. Funct. Anal., 254, 2816-2845, (2008) · Zbl 1148.35080
[5] Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems. In: Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2006) · Zbl 1115.35004
[6] Bahri, A; Li, YY, On a MIN-MAX procedure for the existence of a positive solution for certain scalar field equations in \(\mathbb{R}^N\), Rev. Math. Iberoamericana, 6, 1-15, (1990) · Zbl 0731.35036
[7] Bahri, A; Lions, PL, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14, 365-413, (1997) · Zbl 0883.35045
[8] Bartsch, T; Weth, T, Three nodal solutions of singularly elliptic equations on domains without topology, Ann. I. H. Poincaré Anal. Non Linéaire, 22, 259-281, (2005) · Zbl 1114.35068
[9] Benci, V; Cerami, G, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Ration. Mech. Anal., 99, 283-300, (1987) · Zbl 0635.35036
[10] Berestycki, H., Lions, P.L.: Nonlinear scalar field equations I and II. Arch. Rational Mech. Anal. 82(4), 313-345 (1983) and 347-375 · Zbl 0533.35029
[11] Berestycki, H; Gallouet, T; Kavian, O; Kavian, O, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris série I, 297, 307-310, (1983) · Zbl 0544.35042
[12] Brezis, H; Lieb, E, A relation between pointwise convergence and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490, (1983) · Zbl 0526.46037
[13] Cerami, G, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Accad. Sci. Lett. Inst. Lombardo, 112, 332-336, (1978) · Zbl 0436.58006
[14] Cerami, G, Some nonlinear elliptic problems in unbounded domains, Milan J. Math., 74, 47-77, (2006) · Zbl 1121.35054
[15] Cerami, G; Clapp, M, Sign-changing solutions of semilinear elliptic problems in exterior domains, Calc. Var. Partial Differ. Equ., 30, 353-367, (2007) · Zbl 1174.35026
[16] Cerami, G; Molle, R; Passaseo, D, Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary, Ann. I. H. Poincaré Anal. Non Linéaire, 24, 41-60, (2007) · Zbl 1123.35017
[17] Cerami, G; Passaseo, D, Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with “rich” topology, Nonlinear Anal. TMA, 18, 109-119, (1992) · Zbl 0810.35024
[18] Cerami, G; Passaseo, D, Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains, Nonlinear Anal. TMA, 24, 1533-1547, (1995) · Zbl 0845.35026
[19] Citti, G, On the exterior Dirichlet problem for \(Δ u-u+f(x, u)=0\), Rendiconti del seminario matematico dell’università di Padova, 88, 83-110, (1992) · Zbl 0803.35050
[20] Clapp, M; Salazar, D, Multiple sign changing solutions of nonlinear elliptic problems in exterior domains, Adv. Nonlinear Stud., 12, 427-443, (2012) · Zbl 1263.35116
[21] Costa, D; Magalhaes, CA, Variational elliptic problems which are non quadratic at infinity, Nonlinear Anal. TMA, 23, 1401-1412, (1994) · Zbl 0820.35059
[22] Esteban, M; Lions, PL, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinb. Sect. A, 93, 1-14, (1982) · Zbl 0506.35035
[23] Evéquoz, G; Weth, T, Entire solutions to nonlinear scalar field equations with indefinite linear part, Adv. Nonlinear Stud., 12, 281-314, (2012) · Zbl 1260.35067
[24] Li, G; Zheng, G, The existence of positive solution to some asymptotically linear elliptic equations in exterior domains, Rev. Mat. Iberoamericana, 22, 559-590, (2006) · Zbl 1134.35038
[25] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. I. H. Poincaré. A. N. 1(1-2), 109-145 (1984) and 223-283 · Zbl 0541.49009
[26] Litchinitser, NM; Królikowski, W; Akhmediev, NN; Agrawal, GP, Asymmetric partially coherent solitons in saturable nonlinear media, Phys. Rev. E, 60, 2377-2380, (1999)
[27] Maia, LA; Miyagaki, OH; Soares, SHM, Sign-changing solution for an asymptotically linear Schrödinger equation, Proc. Edin. Math. Soc., 58, 697-716, (2015) · Zbl 1327.35087
[28] Maia, L; Montefusco, E; Pellacci, B, Weakly coupled nonlinear Schrödinger systems: the saturation effect, Calc. Var. Partial Differ. Equ., 46, 325-351, (2013) · Zbl 1257.35171
[29] Nehari, Z, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105, 141-175, (1961) · Zbl 0099.29104
[30] Nehari, Z, A nonlinear oscillation theorem, Duke Math. J., 42, 183-189, (1975) · Zbl 0385.34011
[31] Noris, B; Verzini, G, A remark on natural constraints in variational methods and an application to superlinear Schrödinger systems, J. Differ. Equ., 254, 1529-1547, (2013) · Zbl 1260.58005
[32] Ostrovskaya, EA; Kivshar, YS, Multi-hump optical solitons in a saturable medium, J. Opt. B: Quantum Semiclassical Opt., 1, 77-83, (1999)
[33] Rabinowitz, PH, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291, (1992) · Zbl 0763.35087
[34] Serrin, J; Tang, M, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49, 897-923, (2000) · Zbl 0979.35049
[35] Stegeman, GI; Christodoulides, DN; Segev, M, Optical spatial solitons: historical perspectives, IEEE J. Sel. Top. Quantum Electron., 6, 1419-1427, (2000)
[36] Stuart, CA; Zhou, HS, Applying the mountain pass theorem to an asymptotically linear elliptic equation on \({\mathbb{R}}^{N}\), Commun. Partial Differ. Equ., 24, 1731-1758, (1999) · Zbl 0935.35043
[37] Struwe, M.: Variational Methods, vol. 34. Springer, Berlin (2008) · Zbl 1284.49004
[38] Szulkin, A., Weth, T.: The method of Nehari manifold. In: Handbook of Nonconvex Analysis and Applications, pp. 597-632. Int Press, Somerville (2010) · Zbl 1218.58010
[39] Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996) · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.