×

zbMATH — the first resource for mathematics

The normalizer property for integral group rings of holomorphs of finite nilpotent groups and the symmetric groups. (English) Zbl 1388.20008

MSC:
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16S34 Group rings
20C10 Integral representations of finite groups
20B30 Symmetric groups
20D15 Finite nilpotent groups, \(p\)-groups
20D45 Automorphisms of abstract finite groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sehgal, S. K., Units in Integral Group Rings, (1993), Longman Scientific and Technical Press, Harlow · Zbl 0803.16022
[2] Coleman, D. B., On the modular group ring of a \(p\)-group, Proc. Amer. Math. Soc., 5, 511-514, (1964) · Zbl 0132.27501
[3] Jackowski, S.; Marciniak, Z. S., Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Algebra, 44, 241-250, (1987) · Zbl 0624.20024
[4] Mazur, M., Automorphisms of finite groups, Comm. Algebra, 22, 6259-6271, (1994) · Zbl 0816.20019
[5] Mazur, M., On the isomorphism problem for infinite group rings, Expo. Math., 13, 433-445, (1995) · Zbl 0841.20011
[6] Mazur, M., The normalizer of a group in the unit group of its group ring, J. Algebra, 212, 175-189, (1999) · Zbl 0921.16018
[7] Hertweck, M., A counterexample to the isomorphism problem for integral group rings, Ann. Math., 154, 115-138, (2001) · Zbl 0990.20002
[8] Li, Y.; Sehgal, S. K.; Parmenter, M. M., On the normalizer property for integral group rings, Comm. Algebra, 27, 4217-4223, (1999) · Zbl 0943.16012
[9] Lobão, T. Petit; Milies, C. Polcino, The normalizer property for integral group rings of Frobenius groups, J. Algebra, 256, 1-6, (2002) · Zbl 1017.16024
[10] Lobão, T. Petit; Sehgal, S. K., The normalizer property for integral group rings of complete monomial groups, Comm. Algebra, 31, 2971-2983, (2003) · Zbl 1039.16034
[11] Hertweck, M., Class-preserving Coleman automorphisms of finite groups, Monatsh. Math., 136, 1-7, (2002) · Zbl 1004.20011
[12] Hertweck, M., Local analysis of the normalizer problem, J. Pure Appl. Algebra, 163, 259-276, (2001) · Zbl 0987.16015
[13] Juriaans, S. O.; Miranda, J. M.; Robério, J. R., Automorphisms of finite groups, Comm. Algebra, 32, 1705-1714, (2004) · Zbl 1072.20030
[14] Hertweck, M.; Kimmerle, W., Coleman automorphisms of finite groups, Math. Z., 242, 203-215, (2002) · Zbl 1047.20020
[15] Li, Z. X.; Hai, J. K., Coleman automorphisms of holomorphs of finite abelian groups, Acta Mathematica Sinica, 30, 1549-1554, (2014) · Zbl 1307.16032
[16] Mills, W. H., The automorphisms of the holomoph of a finite abelian group, Transactions of the American Mathematical Society, 85, 1-34, (1957) · Zbl 0079.03302
[17] Rose, J. S., A Course on Group Theory, (1978), Cambridge University Press, Cambridge · Zbl 0371.20001
[18] Gross, F., Automorphisms which centralize a Sylow \(p\)-subgroup, J. Algebra, 77, 202-233, (1988) · Zbl 0489.20019
[19] Hertweck, M., Class-preserving automorphisms of finite groups, J. Algebra, 241, 1-26, (2001) · Zbl 0993.20017
[20] Li, Y., The normalizer property of a metabelian group in its integral group ring, J. Algebra, 256, 343-351, (2002) · Zbl 1017.16023
[21] Marciniak, Z. S.; Roggenkamp, K. W., Algebra-Representation Theory, 28, The normalizer of a finite group in its integral group ring and Čech cohomology, 159-188, (2001), Kluwer Academic, Dordrecht · Zbl 0989.20002
[22] Robinson, D. J. S., A Course in the Theory of Groups, (1996), Springer-Verlag, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.