×

Extended prey-predator algorithm with a group hunting scenario. (English) Zbl 1387.90287

Summary: Prey-predator algorithm (PPA) is a metaheuristic algorithm inspired by the interaction between a predator and its prey. In the algorithm, the worst performing solution, called the predator, works as an agent for exploration whereas the better performing solution, called the best prey, works as an agent for exploitation. In this paper, PPA is extended to a new version called \(nm\)-PPA by modifying the number of predators and also best preys. In \(nm\)-PPA, there will be \(n\) best preys and \(m\) predators. Increasing the value of \(n\) increases the exploitation and increasing the value of \(m\) increases the exploration property of the algorithm. Hence, it is possible to adjust the degree of exploration and exploitation as needed by adjusting the values of \(n\) and \(m\). A guideline on setting parameter values will also be discussed along with a new way of measuring performance of an algorithm for multimodal problems. A simulation is also done to test the algorithm using well known eight benchmark problems of different properties and different dimensions ranging from two to twelve showing that \(nm\)-PPA is found to be effective in achieving multiple solutions in multimodal problems and also has better ability to overcome being trapped in local optimal solutions.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Villasana, M.; Ochoa, G., Heuristic design of cancer chemotherapies, IEEE Transactions on Evolutionary Computation, 8, 6, 513-521 (2004) · doi:10.1109/TEVC.2004.834154
[2] Tilahun, S. L.; Ong, H. C., Bus timetabling as a fuzzy multiobjective optimization problem using preference-based genetic algorithm, ROMET-Traffic & Transportation, 24, 3, 183-191 (2012) · doi:10.7307/ptt.v24i3.311
[3] Ong, H. C.; Tilahun, S. L., Integrating fuzzy preference in genetic algorithm to solve multiobjective optimization problems, Far East Journal of Mathematical Sciences, 55, 165-179 (2011) · Zbl 1259.90046
[4] Fraidin, M. I., Decision-making in dependency court: heuristics, cognitive biases and accountability, Cleveland State Law Review, 60, 913-975 (2013)
[5] Valerdi, R., Heuristics for systems engineering cost estimation, IEEE Systems Journal, 5, 91-98 (2010) · doi:10.1109/jsyst.2010.2065131
[6] Tilahun, S. L., Prey predator algorithm: a new metaheuristic optimization approach [Ph.D. thesis] (April 2013), Penang, Malaysia: School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia
[7] Hamadneh, N.; Sathasivam, S.; Tilahun, S. L.; Choon, O. H., Learning logic programming in radial basis function network via genetic algorithm, Journal of Applied Sciences, 12, 9, 840-847 (2012) · doi:10.3923/jas.2012.840.847
[8] Tilahun, S. L.; Ong, H. C., Modified firefly algorithm, Journal of Applied Mathematics, 2012 (2012) · Zbl 1268.65082 · doi:10.1155/2012/467631
[9] Yang, X.-S., A new metaheuristic bat-inspired Algorithm, Studies in Computational Intelligence, 284, 65-74 (2010) · Zbl 1197.90348 · doi:10.1007/978-3-642-12538-6_6
[10] Yang, X.-S.; Pardalos, P. M.; Rebennack, S., Metaheuristic optimization: algorithm analysis and open problems, Experimental Algorithms. Experimental Algorithms, Lecture Notes in Computer Science, 6630, 21-32 (2011) · Zbl 1215.68020 · doi:10.1007/978-3-642-20662-7_2
[11] Tilahun, S. L.; Kassa, S. M.; Ong, H. C.; Anthony, P.; Ishizuka, M.; Lukose, D., A new algorithm for multilevel optimization problems using evolutionary strategy, inspired by natural adaptation, PRICAI 2012: Trends in Artificial Intelligence: 12th Pacific Rim International Conference on Artificial Intelligence, Kuching, Malaysia, September 3-7, 2012. Proceedings. PRICAI 2012: Trends in Artificial Intelligence: 12th Pacific Rim International Conference on Artificial Intelligence, Kuching, Malaysia, September 3-7, 2012. Proceedings, Lecture Notes in Computer Science, 7458, 577-588 (2012), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-32695-0_51
[12] Blum, C.; Puchinger, J.; Raidl, G. R.; Roli, A.; Filipic, B.; Silc, J., A brief survey on hybrid metaheuristics, Proceedings of 4th International Conference on Bioinspired Optimization Methods and their Applications (BIOMA ’10)
[13] Tilahun, S. L.; Ong, H. C., Vector optimisation using fuzzy preference in evolutionary strategy based firefly algorithm, International Journal of Operational Research, 16, 1, 81-95 (2013) · Zbl 1362.90390 · doi:10.1504/IJOR.2013.050541
[14] Blum, C.; Cotta, C.; Fernàndez, A. J.; Gallardo, J. E.; Mastrolilli, M., Hybridizations of metaheuristics with branch & bound derivates, Studies in Computational Intelligence, 114, 85-116 (2008) · Zbl 1415.90149 · doi:10.1007/978-3-540-78295-7_4
[15] Yang, X.-S., Nature-Inspired Metaheuristics Algorithm (2010), Frome, UK: Luniver Press, Frome, UK
[16] Tilahun, S. L.; Ong, H. C., Prey-predator algorithm: a new metaheuristic optimization algorithm, International Journal of Information Technology & Decision Making, 13, 1-22 (2014)
[17] Dai, W.; Liu, Q.; Chai, T., Particle size estimate of grinding processes using random vector functional link networks with improved robustness, Neurocomputing, 169, 361-372 (2015) · doi:10.1016/j.neucom.2014.08.098
[18] Bahmani-Firouzi, B.; Sharifinia, S.; Azizipanah-Abarghooee, R.; Niknam, T., Scenario-based optimal bidding strategies of GENCOs in the incomplete information electricity market using a new improved prey—predator optimization algorithm, IEEE Systems Journal, 9, 4, 1485-1495 (2015) · doi:10.1109/jsyst.2014.2320972
[19] Hamadneh, N.; Tilahun, S. L.; Sathasivam, S.; Choon, O. H., Prey-predator algorithm as a new optimization technique using in radial basis function neural networks, Research Journal of Applied Sciences, 8, 7, 383-387 (2013) · doi:10.3923/rjasci.2013.383.387
[20] Tilahun, S. L.; Ong, H. C., Comparison between genetic algorithm and prey-predator algorithm, Malaysian Journal of Fundamental and Applied Sciences, 9, 4, 167-170 (2014)
[21] Krebs, C. J., Ecology (2009), San Francisco, Calif, USA: Pearson Education, San Francisco, Calif, USA
[22] Haynes, T.; Sen, S., Evolving behavioral strategies in predators and prey, Adaption and Learning in Multi-Agent Systems: IJCAI’95 Workshop Montréal, Canada, August 21, 1995 Proceedings. Adaption and Learning in Multi-Agent Systems: IJCAI’95 Workshop Montréal, Canada, August 21, 1995 Proceedings, Lecture Notes in Computer Science, 1042, 113-126 (1996), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/3-540-60923-7_22
[23] Laumanns, M.; Rudolph, G.; Schwefel, H.-P., A spatial predator-prey approach to multi-objective optimization: a preliminary study, Parallel Problem Solving from Nature—PPSN V: 5th International Conference Amsterdam, The Netherlands September 27-30, 1998 Proceedings. Parallel Problem Solving from Nature—PPSN V: 5th International Conference Amsterdam, The Netherlands September 27-30, 1998 Proceedings, Lecture Notes in Computer Science, 1498, 241-249 (1998), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/BFb0056867
[24] Molga, M.; Smutnicki, C., Test Functions for Optimization Needs (2005)
[25] Jamil, M.; Yang, X.-S., A literature survey of benchmark functions for global optimisation problems, International Journal of Mathematical Modelling and Numerical Optimisation, 4, 2, 150-194 (2013) · Zbl 1280.65053 · doi:10.1504/IJMMNO.2013.055204
[26] Opacic, J., A heuristic method for finding most extrema of a nonlinear functional, IEEE Transactions on Systems, Man and Cybernetics, 3, 1, 102-107 (1973) · Zbl 0249.65048
[27] Price, W. L., A controlled random search procedure for global optimisation, The Computer Journal, 20, 4, 367-370 (1977) · Zbl 0364.68036 · doi:10.1093/comjnl/20.4.367
[28] Hartman, J. K., Some Experiments in Global Optimization (1972), School United States Naval Postgraduate
[29] Rahnamayan, S.; Tizhoosh, H. R.; Salama, N. M. M., A novel population initialization method for accelerating evolutionary algorithms, Computers & Mathematics with Applications, 53, 10, 1605-1614 (2007) · Zbl 1152.90672 · doi:10.1016/j.camwa.2006.07.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.