zbMATH — the first resource for mathematics

Dynamics of relaxed inflation. (English) Zbl 1387.83142
Summary: The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.

83F05 Cosmology
85A40 Cosmology
81V15 Weak interaction in quantum theory
Full Text: DOI
[1] Graham, PW; Kaplan, DE; Rajendran, S., Cosmological relaxation of the electroweak scale, Phys. Rev. Lett., 115, 221801, (2015)
[2] Espinosa, JR; Grojean, C.; Panico, G.; Pomarol, A.; Pujolàs, O.; Servant, G., Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett., 115, 251803, (2015)
[3] Hardy, E., Electroweak relaxation from finite temperature, JHEP, 11, 077, (2015) · Zbl 1388.81825
[4] J. Jaeckel, V.M. Mehta and L.T. Witkowski, Musings on cosmological relaxation and the hierarchy problem, Phys. Rev.D 93 (2016) 063522 [arXiv:1508.03321] [INSPIRE]. · Zbl 1388.81796
[5] Gupta, RS; Komargodski, Z.; Perez, G.; Ubaldi, L., Is the relaxion an axion?, JHEP, 02, 166, (2016)
[6] Batell, B.; Giudice, GF; McCullough, M., Natural heavy supersymmetry, JHEP, 12, 162, (2015) · Zbl 1388.81765
[7] Matsedonskyi, O., Mirror cosmological relaxation of the electroweak scale, JHEP, 01, 063, (2016) · Zbl 1388.83933
[8] L. Marzola and M. Raidal, Natural relaxation, Mod. Phys. Lett.A 31 (2016) 1650215 [arXiv:1510.00710] [INSPIRE]. · Zbl 1353.81114
[9] Choi, K.; Im, SH, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP, 01, 149, (2016) · Zbl 1388.81796
[10] D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev.D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE]. · Zbl 1383.83007
[11] S. Di Chiara, K. Kannike, L. Marzola, A. Racioppi, M. Raidal and C. Spethmann, Relaxion cosmology and the price of fine-tuning, Phys. Rev.D 93 (2016) 103527 [arXiv:1511.02858] [INSPIRE]. · Zbl 1388.81825
[12] Ibáñez, LE; Montero, M.; Uranga, A.; Valenzuela, I., Relaxion monodromy and the weak gravity conjecture, JHEP, 04, 020, (2016) · Zbl 1388.83923
[13] Hebecker, A.; Rompineve, F.; Westphal, A., Axion monodromy and the weak gravity conjecture, JHEP, 04, 157, (2016) · Zbl 1388.83078
[14] N. Fonseca, L. de Lima, C.S. Machado and R.D. Matheus, Large field excursions from a few site relaxion model, Phys. Rev.D 94 (2016) 015010 [arXiv:1601.07183] [INSPIRE].
[15] Fowlie, A.; Balázs, C.; White, G.; Marzola, L.; Raidal, M., Naturalness of the relaxion mechanism, JHEP, 08, 100, (2016)
[16] Evans, JL; Gherghetta, T.; Nagata, N.; Thomas, Z., Naturalizing supersymmetry with a two-field relaxion mechanism, JHEP, 09, 150, (2016) · Zbl 1390.81591
[17] F.P. Huang, Y. Cai, H. Li and X. Zhang, A possible interpretation of the Higgs mass by the cosmological attractive relaxion, Chin. Phys.C 40 (2016) 113103 [arXiv:1605.03120] [INSPIRE].
[18] T. Kobayashi, O. Seto, T. Shimomura and Y. Urakawa, Relaxion window, Mod. Phys. Lett.A 32 (2017) 1750142 [arXiv:1605.06908] [INSPIRE]. · Zbl 1372.83087
[19] Hook, A.; Marques-Tavares, G., Relaxation from particle production, JHEP, 12, 101, (2016)
[20] T. Higaki, N. Takeda and Y. Yamada, Cosmological relaxation and high scale inflation, Phys. Rev.D 95 (2017) 015009 [arXiv:1607.06551] [INSPIRE]. · Zbl 1388.81765
[21] Choi, K.; Im, SH, Constraints on relaxion windows, JHEP, 12, 093, (2016)
[22] Flacke, T.; Frugiuele, C.; Fuchs, E.; Gupta, RS; Perez, G., Phenomenology of relaxion-Higgs mixing, JHEP, 06, 050, (2017)
[23] L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal, Runaway relaxion monodromy, arXiv:1610.05320 [INSPIRE]. · Zbl 1387.83087
[24] Choi, K.; Kim, H.; Sekiguchi, T., Dynamics of the cosmological relaxation after reheating, Phys. Rev., D 95, (2017)
[25] Z. Lalak and A. Markiewicz, Dynamical relaxation in 2HDM models, arXiv:1612.09128 [INSPIRE].
[26] T. You, A dynamical weak scale from inflation, JCAP09 (2017) 019 [arXiv:1701.09167] [INSPIRE].
[27] J.L. Evans, T. Gherghetta, N. Nagata and M. Peloso, Low-scale D-term inflation and the relaxion mechanism, Phys. Rev.D 95 (2017) 115027 [arXiv:1704.03695] [INSPIRE]. · Zbl 1388.83078
[28] Batell, B.; Fedderke, MA; Wang, L-T, Relaxation of the composite Higgs little hierarchy, JHEP, 12, 139, (2017)
[29] Beauchesne, H.; Bertuzzo, E.; Grilli di Cortona, G., Constraints on the relaxion mechanism with strongly interacting vector-fermions, JHEP, 08, 093, (2017)
[30] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Relaxed inflation, arXiv:1706.00438 [INSPIRE].
[31] M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev.D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].
[32] Barnaby, N.; Namba, R.; Peloso, M., Phenomenology of a pseudo-scalar inflaton: naturally large non-gaussianity, JCAP, 04, 009, (2011)
[33] A. Linde, S. Mooij and E. Pajer, Gauge field production in supergravity inflation: local non-Gaussianity and primordial black holes, Phys. Rev.D 87 (2013) 103506 [arXiv:1212.1693] [INSPIRE].
[34] Pajer, E.; Peloso, M., A review of axion inflation in the era of Planck, Class. Quant. Grav., 30, 214002, (2013) · Zbl 1277.83008
[35] Ferreira, RZ; Notari, A., Thermalized axion inflation, JCAP, 09, 007, (2017)
[36] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys.98 (1936) 714 [physics/0605038] [INSPIRE]. · Zbl 0013.18503
[37] Schwinger, JS, On gauge invariance and vacuum polarization, Phys. Rev., 82, 664, (1951) · Zbl 0043.42201
[38] Adshead, P.; Giblin, JT; Scully, TR; Sfakianakis, EI, Gauge-preheating and the end of axion inflation, JCAP, 12, 034, (2015)
[39] Sorbo, L., Parity violation in the cosmic microwave background from a pseudoscalar inflaton, JCAP, 06, 003, (2011)
[40] L.F. Abbott, A mechanism for reducing the value of the cosmological constant, Phys. Lett.B 150 (1985) 427 [INSPIRE].
[41] Giudice, GF; McCullough, M., A clockwork theory, JHEP, 02, 036, (2017) · Zbl 1377.83100
[42] G.N. Felder, J. García-Bellido, P.B. Greene, L. Kofman, A.D. Linde and I. Tkachev, Dynamics of symmetry breaking and tachyonic preheating, Phys. Rev. Lett.87 (2001) 011601 [hep-ph/0012142] [INSPIRE].
[43] G.N. Felder, L. Kofman and A.D. Linde, Tachyonic instability and dynamics of spontaneous symmetry breaking, Phys. Rev.D 64 (2001) 123517 [hep-th/0106179] [INSPIRE].
[44] E.J. Copeland, S. Pascoli and A. Rajantie, Dynamics of tachyonic preheating after hybrid inflation, Phys. Rev.D 65 (2002) 103517 [hep-ph/0202031] [INSPIRE].
[45] J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev.D 67 (2003) 103501 [hep-ph/0208228] [INSPIRE]. · Zbl 0043.42201
[46] T.D. Cohen and D.A. McGady, The Schwinger mechanism revisited, Phys. Rev.D 78 (2008) 036008 [arXiv:0807.1117] [INSPIRE].
[47] Meerburg, PD; Pajer, E., Observational constraints on gauge field production in axion inflation, JCAP, 02, 017, (2013)
[48] Notari, A.; Tywoniuk, K., Dissipative axial inflation, JCAP, 12, 038, (2016)
[49] García-Bellido, J.; Peloso, M.; Unal, C., Gravitational waves at interferometer scales and primordial black holes in axion inflation, JCAP, 12, 031, (2016)
[50] A.R. Liddle and D.H. Lyth, The cold dark matter density perturbation, Phys. Rept.231 (1993) 1 [astro-ph/9303019] [INSPIRE]. · Zbl 1377.83100
[51] Flauger, R.; McAllister, L.; Pajer, E.; Westphal, A.; Xu, G., Oscillations in the CMB from axion monodromy inflation, JCAP, 06, 009, (2010)
[52] F. Piazza and M. Pospelov, Sub-eV scalar dark matter through the super-renormalizable Higgs portal, Phys. Rev.D 82 (2010) 043533 [arXiv:1003.2313] [INSPIRE].
[53] Harnik, R.; Kopp, J.; Machado, PAN, Exploring ν signals in dark matter detectors, JCAP, 07, 026, (2012)
[54] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP01 (2005) 005 [hep-ph/0409138] [INSPIRE].
[55] K. Harigaya and M. Ibe, Simple realization of inflaton potential on a Riemann surface, Phys. Lett.B 738 (2014) 301 [arXiv:1404.3511] [INSPIRE]. · Zbl 1388.83923
[56] K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev.D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].
[57] Higaki, T.; Takahashi, F., Natural and multi-natural inflation in axion landscape, JHEP, 07, 074, (2014)
[58] R. Kappl, S. Krippendorf and H.P. Nilles, Aligned natural inflation: monodromies of two axions, Phys. Lett.B 737 (2014) 124 [arXiv:1404.7127] [INSPIRE]. · Zbl 1317.83107
[59] Ben-Dayan, I.; Pedro, FG; Westphal, A., Hierarchical axion inflation, Phys. Rev. Lett., 113, 261301, (2014)
[60] Y. Bai and B.A. Stefanek, Natural millicharged inflation, Phys. Rev.D 91 (2015) 096012 [arXiv:1405.6720] [INSPIRE].
[61] Fuente, A.; Saraswat, P.; Sundrum, R., Natural inflation and quantum gravity, Phys. Rev. Lett., 114, 151303, (2015)
[62] Craig, N.; Garcia Garcia, I.; Sutherland, D., Disassembling the clockwork mechanism, JHEP, 10, 018, (2017) · Zbl 1383.83007
[63] Farina, M.; Pappadopulo, D.; Rompineve, F.; Tesi, A., The photo-philic QCD axion, JHEP, 01, 095, (2017)
[64] J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge University Press, Cambridge U.K., (2011) [INSPIRE]. · Zbl 1215.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.