×

Boosted Simon-Wolff spectral criterion and resonant delocalization. (English) Zbl 1387.47025

The authors consider the spectral effects of disorder associated with self-adjoint operators of the form \(H(\omega)=A+V(\omega)\), where \(A\) is self-adjoint bounded operator and \(V(\omega)\) is a multiplication operator, all acting in the \(l^2\)-space of functions over an infinite graph \(G\). Here, the parameter \(\omega\) represents the disorder and is from the probability space \(\Omega\).
Among the existing literature, there exists a dearth of methods for establishing regimes of delocalization in the presence of disorder. On the short list of such are arguments based on the method of resonant delocalization. The main goal of the paper under review is to advance the latter method, combining it with an improved version of the Simon-Wolff criterion for a related sufficiency criterion under which one may conclude the existence of continuous spectrum, and in some situations an absolutely continuous one.
In a related application of the Simon-Wolff criterion for the point spectrum, the authors also present an improved result on the simplicity of the point spectrum, providing it for a naturally broad class of random potentials.

MSC:

47B80 Random linear operators
60J45 Probabilistic potential theory
47H40 Random nonlinear operators
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abrahams, Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42 (10) pp 673– (1979) · doi:10.1103/PhysRevLett.42.673
[2] Aizenman, Resonances and partial delocalization on the complete graph, Ann. Henri Poincaré 16 (9) pp 1969– (2015) · Zbl 1329.81192 · doi:10.1007/s00023-014-0366-9
[3] Aizenman, Absence of mobility edge for the Anderson random potential on tree graphs at weak disorder, EPL (Europhysics Letters) 96 (3) pp 37004– (2011) · doi:10.1209/0295-5075/96/37004
[4] Aizenman, Resonant delocalization for random Schrödinger operators on tree graphs, J. Eur. Math. Soc. (JEMS) 15 (4) pp 1167– (2013) · Zbl 1267.47064 · doi:10.4171/JEMS/389
[5] Aizenman , M Warzel , S. Random operators: disorder effects on quantum spectra and dynamics American Mathematical Society Providence, R.I. · Zbl 1333.82001
[6] Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 pp 1492– (1958) · doi:10.1103/PhysRev.109.1492
[7] Aronszajn, On a problem of Weyl in the theory of Sturm-Liouville equations, Amer. J. Math. 79 pp 597– (1957) · Zbl 0079.10802 · doi:10.2307/2372564
[8] Carmona , R. Lacroix , J. Spectral theory of random Schrödinger operators 10.1007/978-1-4612-4488-2
[9] Cycon, Schrödinger operators with application to quantum mechanics and global geometry (1987)
[10] Dembo, Large deviations techniques and applications (1998) · doi:10.1007/978-1-4612-5320-4
[11] Gol’dshtein, A pure point spectrum of the stochastic one-dimensional Schrödinger operator, Funct. Anal. Appl. 11 (1) pp 1– (1977) · Zbl 0368.34015 · doi:10.1007/BF01135526
[12] Jakšić, Spectral structure of Anderson type Hamiltonians, Invent. Math. 141 (3) pp 561– (2000) · Zbl 0962.60056 · doi:10.1007/s002220000076
[13] Jakšić, Simplicity of singular spectrum in Anderson-type Hamiltonians, Duke Math. J. 133 (1) pp 185– (2006) · Zbl 1107.47027 · doi:10.1215/S0012-7094-06-13316-1
[14] Pastur, Spectra of random and almost-periodic operators (1992) · Zbl 0752.47002 · doi:10.1007/978-3-642-74346-7
[15] Simon, Cyclic vectors in the Anderson model, Rev. Math. Phys. 6 (5A) pp 1183– (1994) · Zbl 0841.60081 · doi:10.1142/S0129055X94000420
[16] Simon, Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993) pp 109– (1995) · doi:10.1090/crmp/008/04
[17] Simon, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Comm. Pure Appl. Math. 39 (1) pp 75– (1986) · Zbl 0609.47001 · doi:10.1002/cpa.3160390105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.