×

zbMATH — the first resource for mathematics

Pricing and ordering policies for price-dependent demand in a supply chain of a single retailer and a single manufacturer. (English) Zbl 1386.90016
Summary: This article discusses joint pricing and ordering policies for price-dependent demand in a supply chain consisting of a single retailer and a single manufacturer. The retailer places orders for products according to an EOQ policy and the manufacturer produces them on a lot-for-lot basis. Four mechanisms with differing levels of coordination are presented. Mathematical models are formulated and solution procedures are developed to determine the optimal retail prices and order quantities. Through extensive numerical experiments, we analyse and compare the behaviours and characteristics of the proposed mechanisms, and find that enhancing the level of coordination has important benefits for the supply chain.

MSC:
90B06 Transportation, logistics and supply chain management
90B05 Inventory, storage, reservoirs
91B24 Microeconomic theory (price theory and economic markets)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abad PL, The Journal of the Operational Research Society 39 pp 603– (1988)
[2] DOI: 10.1111/j.1540-5915.1988.tb00290.x · doi:10.1111/j.1540-5915.1988.tb00290.x
[3] DOI: 10.1016/0377-2217(94)90044-2 · Zbl 0816.90045 · doi:10.1016/0377-2217(94)90044-2
[4] DOI: 10.1016/S0925-5273(02)00142-1 · doi:10.1016/S0925-5273(02)00142-1
[5] DOI: 10.1016/0167-188X(85)90017-5 · doi:10.1016/0167-188X(85)90017-5
[6] DOI: 10.1016/j.ijpe.2004.06.017 · doi:10.1016/j.ijpe.2004.06.017
[7] DOI: 10.1016/S0925-5273(01)00229-8 · doi:10.1016/S0925-5273(01)00229-8
[8] Burwell TH, Decision Sciences 22 pp 1187– (1991)
[9] DOI: 10.1016/S0925-5273(96)00085-0 · doi:10.1016/S0925-5273(96)00085-0
[10] DOI: 10.1287/mnsc.47.5.693.10484 · Zbl 1232.90109 · doi:10.1287/mnsc.47.5.693.10484
[11] DOI: 10.1016/j.tre.2005.12.001 · doi:10.1016/j.tre.2005.12.001
[12] DOI: 10.1016/S1366-5545(01)00014-X · doi:10.1016/S1366-5545(01)00014-X
[13] DOI: 10.1016/j.omega.2005.05.002 · doi:10.1016/j.omega.2005.05.002
[14] DOI: 10.1016/j.cie.2006.10.009 · doi:10.1016/j.cie.2006.10.009
[15] Ertek G, IIE Transactions 34 pp 691– (2002)
[16] DOI: 10.1016/j.ijpe.2007.10.019 · doi:10.1016/j.ijpe.2007.10.019
[17] DOI: 10.2307/1909147 · Zbl 0209.51701 · doi:10.2307/1909147
[18] DOI: 10.1111/j.1540-5915.1993.tb00463.x · doi:10.1111/j.1540-5915.1993.tb00463.x
[19] DOI: 10.1080/07408179408966594 · doi:10.1080/07408179408966594
[20] DOI: 10.1016/j.ijpe.2004.06.054 · doi:10.1016/j.ijpe.2004.06.054
[21] DOI: 10.1016/S0377-2217(00)00021-7 · Zbl 1068.90529 · doi:10.1016/S0377-2217(00)00021-7
[22] DOI: 10.1080/07408179108963837 · doi:10.1080/07408179108963837
[23] DOI: 10.1080/00207720701431144 · Zbl 1148.90316 · doi:10.1080/00207720701431144
[24] DOI: 10.1016/S0377-2217(02)00469-1 · Zbl 1033.90006 · doi:10.1016/S0377-2217(02)00469-1
[25] DOI: 10.1287/mnsc.41.9.1509 · Zbl 0861.90067 · doi:10.1287/mnsc.41.9.1509
[26] DOI: 10.1016/j.dss.2005.05.021 · doi:10.1016/j.dss.2005.05.021
[27] DOI: 10.1016/j.ejor.2007.10.016 · Zbl 1157.91320 · doi:10.1016/j.ejor.2007.10.016
[28] Yu Y, International Journal of Logistics: Research and Applications 9 pp 335– (2006) · doi:10.1080/13675560600836910
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.