×

zbMATH — the first resource for mathematics

Gauge-invariant quantum gravitational corrections to correlation functions. (English) Zbl 1386.83062

MSC:
83C45 Quantization of the gravitational field
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
53Z05 Applications of differential geometry to physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ade, P. A R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13, (2016)
[2] Ade, P. A R., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys., 594, A17, (2016)
[3] Ade, P. A R., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20, (2016)
[4] Burgess, C. P., Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Relativ., 7, 5, (2004) · Zbl 1070.83009
[5] Canepa, G.; Dappiaggi, C.; Khavkine, I., IDEAL characterization of isometry classes of FLRW and inflationary spacetimes, Class. Quantum Grav., 35, (2018) · Zbl 1382.83127
[6] Rainich, G. Y., Electrodynamics in the general relativity theory, Trans. Am. Math. Soc., 27, 106, (1925) · JFM 51.0713.08
[7] Ferrando, J. J.; Sáez, J. A., An intrinsic characterization of the Schwarzschild metric, Class. Quantum Grav., 15, 1323, (1998) · Zbl 0937.83006
[8] Rovelli, C., What is observable in classical and quantum gravity?, Class. Quantum Grav., 8, 297, (1991)
[9] Dittrich, B., Partial and complete observables for canonical general relativity, Class. Quantum Grav., 23, 6155, (2006) · Zbl 1111.83015
[10] Giddings, S. B.; Marolf, D.; Hartle, J. B., Observables in effective gravity, Phys. Rev. D, 74, (2006)
[11] Tambornino, J., Relational observables in gravity: a review, SIGMA, 8, 017, (2012) · Zbl 1242.83047
[12] Khavkine, I., Local and gauge invariant observables in gravity, Class. Quantum Grav., 32, (2015) · Zbl 1327.83125
[13] Marolf, D., Comments on microcausality, chaos, and gravitational observables, Class. Quantum Grav., 32, (2015) · Zbl 1331.83046
[14] Brunetti, R.; Fredenhagen, K.; Rejzner, K., Quantum gravity from the point of view of locally covariant quantum field theory, Commun. Math. Phys., 345, 741, (2016) · Zbl 1346.83001
[15] Brown, J. D.; Kuchař, K. V., Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D, 51, 5600, (1995)
[16] Brunetti, R.; Fredenhagen, K.; Hack, T-P; Pinamonti, N.; Rejzner, K., Cosmological perturbation theory and quantum gravity, J. High Energy Phys., JHEP08(2016), 032, (2016) · Zbl 1390.83059
[17] Fröb, M. B.; Hack, T-P; Higuchi, A., Compactly supported linearised observables in single-field inflation, J. Cosmol. Astropart. Phys., JCAP07(2017), 043, (2017)
[18] Misner, C.; Thorne, K.; Wheeler, J. A., Gravitation, (1973), San Francisco: W.H. Freeman, San Francisco
[19] Fröb, M. B.; Lima, W. C C., Propagators for gauge-invariant observables in cosmology, (2017) · Zbl 1391.83140
[20] Bär, C.; Ginoux, N.; Pfäffle, F., Wave Equations on Lorentzian Manifolds and Quantization, (2007), Zürich, Switzerland: European Mathematical Society Publishing House, Zürich, Switzerland · Zbl 1118.58016
[21] Capper, D. M., On quantum corrections to the graviton propagator, Nuovo Cimento, 25A, 29, (1975)
[22] Kahya, E. O.; Woodard, R. P., Quantum gravity corrections to the one loop scalar self-mass during inflation, Phys. Rev. D, 76, (2007)
[23] Boran, S.; Kahya, E. O.; Park, S., Quantum gravity corrections to the conformally coupled scalar self-mass-squared on de Sitter background, Phys. Rev. D, 90, (2014)
[24] Smirnov, V. A., Evaluating Feynman Integrals, (2005), Berlin: Springer, Berlin
[25] Brychkov, Y. A.; Prudnikov, A. P., Integral Transforms of Generalized Functions, (1977), Moscow: Nauka, Moscow · Zbl 0464.46039
[26] Fröb, M. B., One-loop quantum gravitational corrections to the scalar two-point function at fixed geodesic distance, Class. Quantum Grav., 35, (2018) · Zbl 1382.83042
[27] Holstein, B. R.; Ross, A., Spin effects in long range gravitational scattering, (2008)
[28] Duff, M. J., Quantum corrections to the Schwarzschild solution, Phys. Rev. D, 9, 1837, (1974)
[29] Duff, M. J.; Liu, J. T., Complementarity of the Maldacena and Randall-Sundrum pictures, Phys. Rev. Lett., 85, 2052, (2000) · Zbl 1369.83089
[30] Miao, S. P.; Prokopec, T.; Woodard, R. P., Deducing cosmological observables from the S matrix, Phys. Rev. D, 96, (2017)
[31] Robinson, S. P.; Wilczek, F., Gravitational correction to running of gauge couplings, Phys. Rev. Lett., 96, (2006) · Zbl 1228.83109
[32] Pietrykowski, A. R., Gauge dependence of gravitational correction to running of gauge couplings, Phys. Rev. Lett., 98, (2007)
[33] Schuster, T., Lee–Wick gauge theory and effective quantum gravity, Master’s Thesis, (2008)
[34] Rodigast, A.; Schuster, T., Gravitational corrections to Yukawa and \(φ^4\) interactions, Phys. Rev. Lett., 104, (2010)
[35] Rodigast, A., Renormalisation in perturbative quantum gravity, PhD Thesis, (2012)
[36] Mackay, P. T.; Toms, D. J., Quantum gravity and scalar fields, Phys. Lett. B, 684, 251, (2010)
[37] Gonzalez-Martin, S.; Martin, C. P., Do the gravitational corrections to the beta functions of the quartic and Yukawa couplings have an intrinsic physical meaning?, Phys. Lett. B, 773, 585, (2017) · Zbl 1378.83024
[38] Ebert, D.; Plefka, J.; Rodigast, A., Absence of gravitational contributions to the running Yang–Mills coupling, Phys. Lett. B, 660, 579, (2008) · Zbl 1246.81161
[39] Ellis, J.; Mavromatos, N. E., On the interpretation of gravitational corrections to gauge couplings, Phys. Lett. B, 711, 139, (2012)
[40] Weinberg, S., The Quantum Theory of Fields, Volume 1: Foundations, (2005), Cambridge: Cambridge University Press, Cambridge
[41] Anber, M. M.; Donoghue, J. F.; El-Houssieny, M., Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D, 83, (2011)
[42] Khavkine, I., Quantum astrometric observables: time delay in classical and quantum gravity, Phys. Rev. D, 85, (2012)
[43] Bonga, B.; Khavkine, I., Quantum astrometric observables. II. Time delay in linearized quantum gravity, Phys. Rev. D, 89, (2014)
[44] Rigopoulos, G., On second order gauge invariant perturbations in multi-field inflationary models, Class. Quantum Grav., 21, 1737, (2004) · Zbl 1056.83033
[45] Acquaviva, V.; Bartolo, N.; Matarrese, S.; Riotto, A., Second order cosmological perturbations from inflation, Nucl. Phys. B, 667, 119, (2003) · Zbl 1038.83046
[46] Rigopoulos, G. I.; Shellard, E. P S.; van Tent, B. J W., Non-linear perturbations in multiple-field inflation, Phys. Rev. D, 73, (2006)
[47] Finelli, F.; Marozzi, G.; Vacca, G. P.; Venturi, G., Second order gauge-invariant perturbations during inflation, Phys. Rev. D, 74, (2006)
[48] Nakamura, K., Gauge-invariant formulation of the second-order cosmological perturbations, Phys. Rev. D, 74, (2006)
[49] Malik, K. A.; Wands, D., Cosmological perturbations, Phys. Rep., 475, 1, (2009)
[50] Prokopec, T.; Weenink, J., Frame independent cosmological perturbations, J. Cosmol. Astropart. Phys., JCAP09(2013), 027, (2013)
[51] Toms, D. J., Quantum gravitational contributions to quantum electrodynamics, Nature, 468, 56, (2010)
[52] Toms, D. J., Quadratic divergences and quantum gravitational contributions to gauge coupling constants, Phys. Rev. D, 84, (2011)
[53] Felipe, J. C C.; Brito, L. C T.; Sampaio, M.; Nemes, M. C., Quantum gravitational contributions to the beta function of quantum electrodynamics, Phys. Lett. B, 700, 86, (2011)
[54] Tang, Y.; Wu, Y-L, Quantum Gravitational Contributions to Gauge Field Theories, Commun. Theor. Phys., 57, 629, (2012) · Zbl 1247.83061
[55] Felipe, J. C C.; Cabral, L. A.; Brito, L. C T.; Sampaio, M.; Nemes, M. C., Ambiguities in the gravitational correction of quantum electrodynamics running coupling, Mod. Phys. Lett. A, 28, 1350078, (2013)
[56] Pietrykowski, A. R., Interacting scalar fields in the context of effective quantum gravity, Phys. Rev. D, 87, (2013)
[57] Anber, M. M.; Donoghue, J. F., On the running of the gravitational constant, Phys. Rev. D, 85, (2012)
[58] Wang, C. L.; Woodard, R. P., One-loop quantum electrodynamic correction to the gravitational potentials on de Sitter spacetime, Phys. Rev. D, 92, (2015)
[59] Park, S.; Prokopec, T.; Woodard, R. P., Quantum scalar corrections to the gravitational potentials on de Sitter background, J. High Energy Phys., JHEP01(2016), 074, (2016) · Zbl 1388.83138
[60] Fröb, M. B.; Verdaguer, E., Quantum corrections to the gravitational potentials of a point source due to conformal fields in de Sitter, J. Cosmol. Astropart. Phys., JCAP03(2016), 015, (2016)
[61] Fröb, M. B.; Verdaguer, E., Quantum corrections for spinning particles in de Sitter, J. Cosmol. Astropart. Phys., JCAP04(2017), 022, (2017)
[62] Leibbrandt, G., Introduction to the technique of dimensional regularization, Rev. Mod. Phys., 47, 849, (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.