×

zbMATH — the first resource for mathematics

Lattice Boltzmann model for simulating viscous compressible flows. (English) Zbl 1386.76128

MSC:
76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76J20 Supersonic flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Succi S., Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) · Zbl 0990.76001
[2] DOI: 10.1103/PhysRevLett.61.2332
[3] DOI: 10.1209/epl/i1998-00346-7
[4] Haydock D., J. Phys. A: Math. Gen. 34 pp 5201–
[5] DOI: 10.1140/epjb/e2008-00067-3
[6] DOI: 10.1016/0045-7930(94)00037-Y · Zbl 0845.76086
[7] DOI: 10.1103/PhysRevE.56.6811
[8] Yan G., Phys. Rev. E 59 pp 454–
[9] Shi W. P., Numer. Heat Trans. Part B 40 pp 1–
[10] DOI: 10.1103/PhysRevE.69.056702
[11] DOI: 10.2514/1.33250
[12] DOI: 10.2514/1.35332
[13] DOI: 10.1103/PhysRevE.47.R2249
[14] DOI: 10.1103/PhysRevE.50.2776
[15] DOI: 10.1103/PhysRevE.67.036306
[16] DOI: 10.1103/PhysRevE.70.016703
[17] DOI: 10.1016/j.physa.2005.06.103
[18] DOI: 10.1016/j.physa.2007.11.013
[19] DOI: 10.1103/PhysRevE.69.035701
[20] DOI: 10.1016/j.physa.2007.03.037
[21] DOI: 10.1209/epl/i2004-10334-y
[22] DOI: 10.2514/1.15993
[23] DOI: 10.1103/PhysRevE.58.7283
[24] DOI: 10.1103/PhysRevE.61.2645
[25] DOI: 10.1006/jcph.2000.6487 · Zbl 0971.76074
[26] DOI: 10.1103/PhysRevE.68.016303
[27] DOI: 10.1016/j.compfluid.2003.12.001 · Zbl 1113.76435
[28] DOI: 10.1103/PhysRevE.75.036706
[29] DOI: 10.1006/jcph.2000.6425 · Zbl 0969.76075
[30] DOI: 10.1103/PhysRevE.76.056705
[31] DOI: 10.1142/S0129183107011868 · Zbl 1151.82405
[32] Pareschil L., J. Sci. Comput. 25 pp 129–
[33] Zhang H. X., Acta Aerodyn. Sin. 6 pp 143–
[34] DOI: 10.1103/PhysRevE.75.036704
[35] DOI: 10.1103/PhysRev.94.511 · Zbl 0055.23609
[36] DOI: 10.1103/PhysRevE.61.6546
[37] Cercignani C., Theory and Application of the Boltzmann Equation (1975) · Zbl 0403.76065
[38] DOI: 10.1146/annurev.aa.30.090192.002551
[39] DOI: 10.1142/S0129183108013321 · Zbl 1353.76076
[40] DOI: 10.1103/PhysRevE.64.031203
[41] DOI: 10.1016/S0021-9991(03)00279-1 · Zbl 1076.76063
[42] DOI: 10.1063/1.2738606 · Zbl 1182.76230
[43] DOI: 10.1016/0021-9991(90)90233-Q · Zbl 0694.65041
[44] Guo Z. L., Chin. Phys. Soc. 11 pp 0366–
[45] DOI: 10.1007/BF02179969 · Zbl 1106.82348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.