×

HMM with emission process resulting from a special combination of independent Markovian emissions. (English) Zbl 1386.60253

Summary: One of the most used variants of hidden Markov models (HMMs) is the standard case where the time is discrete and the state spaces (hidden and observed spaces) are finite. In this framework, we are interested in HMMs whose emission process results from a combination of independent Markov chains. Principally, we assume that the emission process evolves as follows: given a hidden state realization \(k\) at time \(t\), an emission is a realization of a Markov chain \(Y_{t}^{k}\) at time \(t\), and for two different hidden states \(k\) and \(k^{'}\), \(Y_{t}^{k}\) and \(Y_{t}^{k^{'}}\) are assumed independent. Given the hidden process, the considered emission process selects its realizations from independent and homogeneous Markov chains evolving simultaneously. In this paper, we propose to study the three known basic problems of such an HMM variant, by deriving corresponding formulas and algorithms. This allows us to enrich the set of application scenarios of HMMs. Numerical examples are presented to show the applicability of our proposed approach by deriving statistical estimations.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
62G05 Nonparametric estimation
60G20 Generalized stochastic processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. E. Baum, An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes, Inequalities III: Proceedings of the Third Symposium on Inequalities (Los Angeles 1969), Academic Press, New York (1972), 1-8.; Baum, L. E., An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes, Inequalities III: Proceedings of the Third Symposium on Inequalities, 1-8 (1972)
[2] L. E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Statist. 37 (1966), 1554-1563.; Baum, L. E.; Petrie, T., Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Statist., 37, 1554-1563 (1966) · Zbl 0144.40902
[3] L. E. Baum, T. Petrie, G. Soules and N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Statist. 41 (1970), 164-171.; Baum, L. E.; Petrie, T.; Soules, G.; Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Statist., 41, 164-171 (1970) · Zbl 0188.49603
[4] R. J. Boys and D. A. Henderson, A Bayesian approach to DNA sequence segmentation, Biometrics 60 (2004), no. 3, 573-588.; Boys, R. J.; Henderson, D. A., A Bayesian approach to DNA sequence segmentation, Biometrics, 60, 3, 573-588 (2004) · Zbl 1274.62728
[5] R. J. Boys, D. A. Henderson and D. J. Wilkinson, Detecting homogeneous segments in DNA sequences by using hidden Markov models, J. Roy. Statist. Soc. Ser. C 49 (2000), no. 2, 269-285.; Boys, R. J.; Henderson, D. A.; Wilkinson, D. J., Detecting homogeneous segments in DNA sequences by using hidden Markov models, J. Roy. Statist. Soc. Ser. C, 49, 2, 269-285 (2000) · Zbl 0944.62108
[6] J. V. Braun and H.-G. Muller, Statistical methods for DNA sequence segmentation, Statist. Sci. 13 (1998), no. 2, 142-162.; Braun, J. V.; Muller, H.-G., Statistical methods for DNA sequence segmentation, Statist. Sci., 13, 2, 142-162 (1998) · Zbl 0960.62121
[7] H. Bunke and T. Caelli, Hidden Markov Models: Applications in Computer Vision, World Scientific, Hackensack, 2001.; Bunke, H.; Caelli, T., Hidden Markov Models: Applications in Computer Vision (2001)
[8] O. Cappé, E. Moulines and T. Rydén, Inference in Hidden Markov Models, Springer Ser. Statist., Springer, New York, 2005.; Cappé, O.; Moulines, E.; Rydén, T., Inference in Hidden Markov Models (2005) · Zbl 1080.62065
[9] G. A. Churchill, Stochastic models for heterogeneous DNA sequences, Bull. Math. Biol. 51 (1989), no. 1, 79-94.; Churchill, G. A., Stochastic models for heterogeneous DNA sequences, Bull. Math. Biol., 51, 1, 79-94 (1989) · Zbl 0662.92012
[10] G. A. Churchill, Hidden Markov chains and the analysis of genome structure, Comput. Chem. 16 (1992), no. 2, 107-115.; Churchill, G. A., Hidden Markov chains and the analysis of genome structure, Comput. Chem., 16, 2, 107-115 (1992) · Zbl 0752.92015
[11] R. E. S. Durbin, A. Krogh and G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, 1998.; Durbin, R. E. S.; Krogh, A.; Mitchison, G., Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (1998) · Zbl 0929.92010
[12] C. Eng, Développement de méthodes de fouille de données fondées sur les modèles de Markov cachés du second ordre pour l’identification d’hétérogénéité dans les génomes bactériens, Ph.D. thesis, Université Henri Poincaré Nancy 1, Nancy, 2010.; Eng, C., Développement de méthodes de fouille de données fondées sur les modèles de Markov cachés du second ordre pour l’identification d’hétérogénéité dans les génomes bactériens (2010)
[13] G. D. Forney, Jr., The Viterbi algorithm, Proc. IEEE 61 (1973), 268-278.; Forney, Jr., G. D., The Viterbi algorithm, Proc. IEEE, 61, 268-278 (1973)
[14] N. Friedman, K. Murphy and S. Russell, Learning the structure of dynamic probabilistic networks, Proceedings Fourteenth Conference on Uncertainty Artificial Intelligence, Morgan Kaufmann Publishers, San Francisco (1998), 139-147.; Friedman, N.; Murphy, K.; Russell, S., Learning the structure of dynamic probabilistic networks, Proceedings Fourteenth Conference on Uncertainty Artificial Intelligence, 139-147 (1998)
[15] M. Gales and S. Young, The application of hidden Markov models in speech recognition, Found. Trends Signal Process. 1 (2007), no. 3, 195-304.; Gales, M.; Young, S., The application of hidden Markov models in speech recognition, Found. Trends Signal Process., 1, 3, 195-304 (2007) · Zbl 1145.68045
[16] Z. Ghahramani, Learning dynamic Bayesian networks, Adaptive Processing of Sequences and Data Structures, Springer, Berlin (1998), 168-197.; Ghahramani, Z., Learning dynamic Bayesian networks, Adaptive Processing of Sequences and Data Structures, 168-197 (1998)
[17] Z. Ghahramani, An introduction to hidden Markov models and Bayesian networks, Int. J. Pattern Recognit. Artif. Intell. 15 (2001), no. 1, 9-42.; Ghahramani, Z., An introduction to hidden Markov models and Bayesian networks, Int. J. Pattern Recognit. Artif. Intell., 15, 1, 9-42 (2001)
[18] J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica 57 (1989), no. 2, 357-384.; Hamilton, J. D., A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57, 2, 357-384 (1989) · Zbl 0685.62092
[19] F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cambridge, 1997.; Jelinek, F., Statistical Methods for Speech Recognition (1997) · Zbl 1504.68003
[20] T. Koski, Hidden Markov Models for Bioinformatics, Comput. Biol. Ser. 2, Kluwer Academic Publishers, Dordrecht, 2001.; Koski, T., Hidden Markov Models for Bioinformatics (2001) · Zbl 0983.92001
[21] K. P. Murphy, Dynamic Bayesian Networks: Representation, Inference and Learning, ProQuest LLC, Ann Arbor, 2002; Ph.D. thesis, University of California, Berkeley.; Murphy, K. P., Dynamic Bayesian Networks: Representation, Inference and Learning (2002)
[22] T. A. Patterson, A. Parton, R. Langrock, P. G. Blackwell, L. Thomas and R. King, Statistical modelling of individual animal movement: An overview of key methods and a discussion of practical challenges, AStA Adv. Stat. Anal. 101 (2017), no. 4, 399-438.; Patterson, T. A.; Parton, A.; Langrock, R.; Blackwell, P. G.; Thomas, L.; King, R., Statistical modelling of individual animal movement: An overview of key methods and a discussion of practical challenges, AStA Adv. Stat. Anal., 101, 4, 399-438 (2017) · Zbl 1443.62392
[23] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognation, Proc. IEEE 77 (1989), no. 2, 257-286.; Rabiner, L. R., A tutorial on hidden Markov models and selected applications in speech recognation, Proc. IEEE, 77, 2, 257-286 (1989)
[24] L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition, Prentice-Hall, Upper Saddle River, 1993.; Rabiner, L. R.; Juang, B.-H., Fundamentals of Speech Recognition (1993) · Zbl 0762.62036
[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, Upper Saddle River, 2002.; Russell, S.; Norvig, P., Artificial Intelligence: A Modern Approach (2002) · Zbl 0835.68093
[26] A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inform. Theory 13 (1967), no. 2, 260-269.; Viterbi, A., Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inform. Theory, 13, 2, 260-269 (1967) · Zbl 0148.40501
[27] W. Zucchini, I. L. MacDonald and R. Langrock, Hidden Markov Models for Time Series, 2nd ed., Monogr. Statist. Appl. Probab. 150, CRC Press, Boca Raton, 2016.; Zucchini, W.; MacDonald, I. L.; Langrock, R., Hidden Markov Models for Time Series (2016) · Zbl 1362.62005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.