×

Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells. (English) Zbl 1384.92043

Summary: The studies of nonlinear models in epidemiology have generated a deep interest in gaining insight into the mechanisms that underlie AIDS-related cancers, providing us with a better understanding of cancer immunity and viral oncogenesis. In this article, we analyze an HIV-1 model incorporating the relations between three dynamical variables: cancer cells, healthy \(\mathrm{CD}4^{+}\;\mathrm{T}\) lymphocytes, and infected \(\mathrm{CD}4^{+}\;\mathrm{T}\) lymphocytes. Recent theoretical investigations indicate that these cells interactions lead to different dynamical outcomes, for instance to periodic or chaotic behavior. Firstly, we analytically prove the boundedness of the trajectories in the system’s attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. Our calculations reveal that the highest observable variable is the population of cancer cells, thus indicating that these cells could be monitored in future experiments in order to obtain time series for attractor’s reconstruction. We identify different dynamical behaviors of the system varying two biologically meaningful parameters: \(r_{1}\), representing the uncontrolled proliferation rate of cancer cells, and \(k_1\), denoting the immune system’s killing rate of cancer cells. The maximum Lyapunov exponent is computed to identify the chaotic regimes. Considering very recent developments in the literature related to the homotopy analysis method (HAM), we calculate the explicit series solutions of the cancer model and focus our analysis on the dynamical variable with the highest observability index. An optimal homotopy analysis approach is used to improve the computational efficiency of HAM by means of appropriate values for the convergence control parameter, which greatly accelerate the convergence of the series solution. The approximated analytical solutions are used to compute density plots, which allow us to discuss additional dynamical features of the model.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
PDFBibTeX XMLCite
Full Text: DOI DOI

References:

[1] Antamn, K., Chang, Y.: Kaposi’s sarcoma. England J. Med. 342(14), 1027-1038 (2000) · doi:10.1056/NEJM200004063421407
[2] Chang, Y., Cesarman, E., Pessin, M.S., Lee, F., Culpepper, J., Knowles, D.M., Moore, P.S.: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865-1869 (1994) · doi:10.1126/science.7997879
[3] Cranage, M.P.: Macaques infected with live attenuated SIVmac are protected against superinfection via the rectal mucosa. Virol. 229, 143-54 (1997) · doi:10.1006/viro.1996.8419
[4] Klatzmann, D., Barr-Sinoussi, F.: Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science 225, 59-63 (1984) · doi:10.1126/science.6328660
[5] Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J.C., Montagnier, L.: T-lymphocyte t4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767-768 (1984) · doi:10.1038/312767a0
[6] Gupta, P., Balachandran, R.: Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. J. Virol. 63, 2361-2365 (1989)
[7] Diegel, M.L., Moran, P.A.: Regulation of HIV production by blood mononuclear cells from HIV-infected donors: II. HIV-1 production depends on T cell-monocyte interaction. AIDS Res. Hum. Retro, 9465-73 (1993)
[8] Schrier, R.D., McCutchan, J.A., Wiley, C.A.: Mechanisms of immune activation of human immunodeficiency virus in monocytes/macrophages. J. Virol. 67, 5713-5720 (1993)
[9] Callaway, D.S., Perelson, A.S.: HIV-1 Infection and low steady state viral loads. Bull. Math. Biol. 64, 29-64 (2002) · Zbl 1334.92227 · doi:10.1006/bulm.2001.0266
[10] Kirschner, D.E., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775-792 (1997) · Zbl 0876.92016 · doi:10.1007/s002850050076
[11] Bogle, G., Dunbar, R.: Simulating T-cell motility in the lymph node paracortex with a packed lattice geometry. Immunol. Cell Biol. 86, 676-687 (2008) · doi:10.1038/icb.2008.60
[12] Sigal, A., Kim, J.T., Balazas, A.B., Dekel, E., Mayo, A., Milo, R., Baltimore, D.: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95-98 (2011) · doi:10.1038/nature10347
[13] Lou, J., Ruggeri, T., Tebaldi, C.: Modeling cancer in HIV-1 infected individuals: equilibria, cycles and chaotic behavior. Math. Bios. Eng. 3, 313-324 (2006) · Zbl 1097.92030 · doi:10.3934/mbe.2006.3.313
[14] Liao, S.J.: The Proposed Homotopy Analysis Techniques for the Solution of Nonlinear Problems. Ph.D. Dissertation, Shanghai, Shanghai Jiao Tong University (1992) · Zbl 1099.34048
[15] Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Chapman and Hall, Boca Raton (2003) · Zbl 1051.76001 · doi:10.1201/9780203491164
[16] Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297-355 (2007) · doi:10.1111/j.1467-9590.2007.00387.x
[17] Abbasbandy, S.: Solution for the FitzHugh-Nagumo equation with the homotopy analysis method. Appl. Math. Modell. 32, 2706-2714 (2008) · Zbl 1167.35395 · doi:10.1016/j.apm.2007.09.019
[18] Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solving systems of ODEs by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 13, 2060-2070 (2008) · Zbl 1221.65194 · doi:10.1016/j.cnsns.2007.05.026
[19] Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A.: Boundary layer flow of nanofluid over a nonlinearly stretching sheet with convective boundary condition. IEEE-Trans. Nanotechnol. 14, 159-168 (2015) · doi:10.1109/TNANO.2014.2374732
[20] Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A.: Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet. Int. J. Non-Linear Mech. doi:10.1016/j.ijnonlinmec.2015.01.005 (2015) · Zbl 1215.92068
[21] Khan, H., Mohapatra, R.N., Vajravelu, K., Liao, S.J.: The explicit series solution of SIR and SIS epidemic models. Appl. Math. Comput. 215, 653-669 (2009) · Zbl 1171.92033
[22] Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T cells. Math. Bios. 165, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[23] Lou, J., Ma, Z.: The impact of the CD8+ cell non-cytotoxic antiviral response (CNAR) and cytotoxic T lymphocytes (CTL) activity in cell-to-cell spread model for HIV-1 with a time delay. J. Biol. Syst. 12(1), 73-90 (2004) · Zbl 1099.34048 · doi:10.1142/S0218339004001038
[24] Wodarz, D., Levy, D.N.: Effect of different modes of viral spread on the dynamics of multiply infected cells in human immunodeficiency virus infection. J. R. Soc. Interf. 8(55), 289-300 (2011) · doi:10.1098/rsif.2010.0266
[25] Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011) · doi:10.1016/j.cell.2011.02.013
[26] Lefever, R., Erneux, T.: On the growth of cellular tissues under constant and fluctuating environmental conditions. Nonlin. Electrodyn. Biol. Syst., 287-305 (1984) · Zbl 1097.92030
[27] Qi, A.S., Du, Y.: The Nonlinear Medeles for Immunity Shangai. Scientific and Technology Education Publishing House (1998)
[28] Venturino, E.: Simple metaecoepidemic models. Bull. Math. Biol. 73, 917-950 (2011) · Zbl 1215.92068 · doi:10.1007/s11538-010-9542-3
[29] Russell, J., Cohn, R.: Gronwall’ s Inequality. Bookvika publishing (2013)
[30] Letellier, C., Aguire, L.A.: Investigating nonlinear dynamics from time series: the influence of symmetries and the choice of observables. Chaos 12, 549-558 (2002) · Zbl 1080.37600 · doi:10.1063/1.1487570
[31] Letellier, C., Aguire, L.A., Maquet, J.: Relation between observability and differential embeddings for nonlinear dynamics. Phys. Rev. E 71, 066213 (2005) · doi:10.1103/PhysRevE.71.066213
[32] Letellier, C., Denis, F., Aguirre, L.A.: What can be learned from a chaotic cancer model. J. Theor. Biol. 322, 7-16 (2013) · Zbl 1406.92313 · doi:10.1016/j.jtbi.2013.01.003
[33] Tkaczyk, E.R., Zhong, C.F., Ye, J.Y., Myc, A., Thomas, T., Cao, Z., Duran-Struuck, R., Luker, K.E., Luker, G.D., Norris, T.B., Baker, J. Jr.: In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry. Opt. Commun. 281(4), 888-894 (2008) · doi:10.1016/j.optcom.2007.10.106
[34] Hatziioannou, T., Evans, D.T.: Animal models for HIV/AIDS research. Nat. Rev. Microbiol. 10, 852-867 (2012) · doi:10.1038/nrmicro2911
[35] Parker, T., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag (1989) · Zbl 0692.58001
[36] Alomari, A.K., Noorani, M.S.M., Nazar, R., Li, C.P.: Homotopy analysis method for solving fractional Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 15, 1864-1872 (2010) · Zbl 1222.65082 · doi:10.1016/j.cnsns.2009.08.005
[37] Liao, S.J.: Advances in the homotopy analysis method. World Scientific Publishing Co (2014) · Zbl 1283.35003
[38] Yabushita, K., Yamashita, M., Tsuboi, K.: An analytical solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A: Math. Theor. 40, 8403-8416 (2007) · Zbl 1331.70041 · doi:10.1088/1751-8113/40/29/015
[39] Liao, S.J.: An optimal homotopy analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003-2016 (2010) · Zbl 1222.65088 · doi:10.1016/j.cnsns.2009.09.002
[40] Ghoreishi, M., Ismail, A.I.B.M., Alomari, A.K.: Application of the homotopy analysis method for solving a model for HIV infection of CD4 +t-cells. Math. Comput. Modell. 54, 3007-3015 (2011) · Zbl 1235.65095 · doi:10.1016/j.mcm.2011.07.029
[41] Lou, J., Ruggeri, T.: A time delay model about AIDS-related cancer: equilibria, cycles and chaotic behavior. Ricerche Mat. 56, 195-208 (2007) · Zbl 1150.92007 · doi:10.1007/s11587-007-0013-6
[42] Itik, M., Banks, S.P.: Chaos in a three-dimensional cancer model. Int. J. Bifurc. Chaos 20, 71-79 (2010) · Zbl 1183.34064 · doi:10.1142/S0218127410025417
[43] Xu, P.: Differential phase space reconstructed for chaotic time series. Appl. Math. Modell. 33(2), 999-1013 (2009) · Zbl 1168.37324 · doi:10.1016/j.apm.2007.12.021
[44] Roux, J.-C., Simoyi, R.H., Swinney, H.L.: Observation of a strange attractor. Phys. D 8, 257-266 (1983) · Zbl 0538.58024 · doi:10.1016/0167-2789(83)90323-8
[45] Olsen, L.F., Schaffer, W.M.: Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science 249, 499-504 (1990) · doi:10.1126/science.2382131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.