×

zbMATH — the first resource for mathematics

Blood cell dynamics: half of a century of modelling. (English) Zbl 1384.92027
Summary: The objective of this paper is to give a review of the main works dealing with mathematical modeling of blood cell formation, disorders and treatments within the past fifty years. From the first models to the most recent ones, this research field has inspired many leading experts in mathematics, biology, physics, physiology and computer sciences. Each contribution was a step further to the understanding of these complex processes. This work summarizes the key ones and tries to show not only the evolution of the interest for this problem but also the different research trends throughout the decades up to the latest models of the past years.

MSC:
92C37 Cell biology
92C15 Developmental biology, pattern formation
37N25 Dynamical systems in biology
35L02 First-order hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. S. Ackleh, K. Deng, K. Ito, J. J. Thibodeaux. A structured poiesis model with nonlinear cell maturation velocity and hormone decay rate. Math Biosci. (2006), No. 204 (1), 21-48. · Zbl 1104.92012
[2] A. S. Ackleh, J. J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Math Biosci Eng. (2008), No. 5 (4), 601-16. · Zbl 1153.92012
[3] M. Adimy, O. Angulo, F. Crauste, J.C. Lopez-Marcos. Numerical integration of a mathematical model of hematopoietic stem cell dynamics, Computers Mathematics with Applications. (2008), Vol. 56 (3), 594-60. · Zbl 1155.92308
[4] M. Adimy, O. Angulo, J. Lopez-Marcos, M. L. Opez-Marcos. Asymptotic behaviour of a mathematical model of hematopoietic stem cell dynamics. International Journal of Computer Mathematics. (2014), Vol. 91, No. 2, 198-208. · Zbl 1291.35410
[5] M. Adimy, O. Angulo, C. Marquet, L. Sebaa. A mathematical model of multistage hematopoietic cell lineages. Discrete and Continuous Dynamical Systems - Series B (2014) Vol. 19, No. 1, 1-26. · Zbl 1303.34064
[6] M. Adimy, S. Bernard, J. Clairambault, F. Crauste, S. Génieys, L. Pujo-Menjouet. Modélisation de la dynamique de l’hématopoîèse normale et pathologique. Hématologie. (2008), 14 (5), 339-350.
[7] M. Adimy, A. Chekroun, T. M. Touaoula. Age structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete and Continuous Dynamical Systems - Series B. (2015), Vol. 20, No. 9, 2765-2791. · Zbl 1326.34119
[8] M. Adimy, A. Chekroun, T. M. Touaoula. A delay differential-difference system of hematopoietic stem cell dynamics. Comptes Rendus Mathématiques. (2015), 353 (4), 303-307. · Zbl 1330.92039
[9] M. Adimy, F. Crauste. Un modèle non-linéaire de prolifération cellulaire : extinction des cellules et invariance. Comptes Rendus Mathématiques. (2003), 336, 559-564. · Zbl 1024.35030
[10] M. Adimy, F. Crauste. Global stability of a partial differential equation with distributed delay due to cellular replication. Nonlinear Analysis. (2003), TMA, 54 (8), 1469-1491. · Zbl 1028.35149
[11] M. Adimy, F. Crauste. Stability and instability induced by time delay in an erythropoiesis model. Monografias del Seminario Matematico Garcia de Galdeano. (2004), 31, 3-12.
[12] M. Adimy, F. Crauste. Existence, positivity and stability for a nonlinear model of cellular proliferation. Nonlinear Analysis: Real World Applications. (2005), 6 (2), 337-366. · Zbl 1073.35055
[13] M. Adimy, F. Crauste. Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay. Discrete and Continuous Dynamical Systems Series B. (2007), 8(1), 19-38. · Zbl 1139.34058
[14] M. Adimy, F. Crauste. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulation. Mathematical and Computer Modelling. (2009), 49, 2128-2137. · Zbl 1171.34344
[15] M. Adimy, F. Crauste. Delay Differential Equations and Autonomous Oscillations in Hematopoietic Stem Cell Dynamics Modeling. Mathematical Modelling of Natural Phenomena (2012) 7 (6), 1-22. article · Zbl 1262.34091
[16] M. Adimy, F. Crauste, A. El Abdllaoui. Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays. Journal of Mathematical Modelling and Natural Phenomena (2006), 1(2), 1-19. · Zbl 1337.34074
[17] M. Adimy, F. Crauste, A. El Abdllaoui. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. Journal of Biological Systems (2008), Vol. 16 (3), 395-424. · Zbl 1155.92019
[18] M. Adimy, F. Crauste, A. El Abdllaoui. Boundedness and Lyapunov Function for a Nonlinear System of Hematopoietic Stem Cell Dynamics. Comptes Rendus Mathematique, (2010) 348 (7-8), 373-377. · Zbl 1192.34098
[19] M. Adimy, F. Crauste, A. Halanay, M. Neamtu, D. Opris. Stability of limit cycles in a pluripotent stem cell dynamics model. Chaos, Solitons and Fractals (2006), 27 (4), 1091-1107. · Zbl 1079.92022
[20] M. Adimy, F. Crauste, My L. Hbid, R. Qesmi. Stability and Hopf bifurcation for a cell population model with state-dependent delay. SIAM J. Appl. Math. (2010) 70 (5), 1611-1633. · Zbl 1206.34102
[21] M. Adimy, F. Crauste, C. Marquet. Asymptotic behavior and stability switch for a mature-immature model of cell differentiation. Nonlinear Analysis: Real World Applications (2010) 11 (4), 2913-2929. · Zbl 1197.35043
[22] M. Adimy, F. Crauste, L. Pujo-Menjouet. On the stability of a maturity structured model of cellular proliferation. Dis. Cont. Dyn. Sys. Ser. A (2005), 12 (3), 501-522. . · Zbl 1064.35023
[23] M. Adimy, F. Crauste, S. Ruan. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications (2005), 6 (4), 651-670. · Zbl 1074.92010
[24] M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math. (2005), 65 (4), 1328-1352. · Zbl 1090.34058
[25] M. Adimy, F. Crauste, S. Ruan. Periodic Oscillations in Leukopoiesis Models with Two Delays. Journal of Theoretical Biology (2006), 242, 288-299.
[26] M. Adimy, F. Crauste, S. Ruan. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bulletin of Mathematical Biology (2006), 68 (8), 2321-2351.
[27] M. Adimy, K. Ezzinbi, C. Marquet. Ergodic and weighted pseudo-almost periodic solutions for partial functional differential equations in fading memory spaces. Journal of Applied Mathematics and Computing (2014) 44, No. 1-2, 147-165. · Zbl 1298.34144
[28] M. Adimy, C. Marquet. On the stability of hematopoietic model with feedback control. C. R. Math. Acad. Sci. Paris. (2012) 350, 173-176. · Zbl 1236.92018
[29] M. Adimy, L. Pujo-Menjouet. A singular transport model describing cellular division. C.R. Acad. Sci. Paris (2001), 332 (12), 1071-1076. · Zbl 0982.35029
[30] M. Adimy, L. Pujo-Menjouet. A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electron. J. Diff. Equ. (2003), 107, 1-14. · Zbl 1036.35053
[31] M. Adimy, L. Pujo-Menjouet. Asymptotic behavior of a singular transport equation modelling cell division. Dis. Cont. Dyn. Sys. Ser. B (2003), 3 (3), 439-456. · Zbl 1120.35305
[32] E. Afenya, S. Mundle. Hematologic Disorders and Bone Marrow Peripheral Blood Dynamics. Math. Model. Nat. Phenom. (2010) Vol. 5, No. 3, 15-27. DOI: . · Zbl 1187.92048
[33] T. Alarcon, P. Getto, A. Marciniak-Czochra, M. D. Vivanco. A model for stem cell population dynamics with regulated maturation delay. Disc. Cont. Dyn. Syst. Suppl. (2011), 32-43. · Zbl 1306.92041
[34] U. an der Heiden, M.C. Mackey. Mixed feedback: A paradigm for regular and irregular oscillations. Temporal Disorder in Human Oscillatory Systems (eds. L. Rensing, U. an der Heiden, and M.C. Mackey), Springer-Verlag, New York, Berlin, Heidelberg 1987, 30-36. · Zbl 0644.92014
[35] E.S. Antoniou, C. L. Mouser, M. E. Rosar, J. Tadros, E. K. Vassiliou. Hematopoietic stem cell proliferation modeling under the influence of hematopoietic-inducing agent. Shock. (2009) Nov;32(5):471-7. doi: .
[36] R. Apostu, M.C. Mackey. Understanding cyclical thrombocytopenia: A mathematical modeling approach. J. Theor. Biol. (2008), 251, 297-316. · Zbl 1398.92107
[37] O. Arino, M. Kimmel. Asymptotic analysis of a functional-integral equation related to cell population kinetics, North-Holland Mathematics Studies, Proceedings of the VIth International Conference on Trends in the Theory and Practice of Non-Linear Analysis (1985), 110:27-32. · Zbl 0579.92010
[38] O. Arino, M. Kimmel. Stability analysis of models of cell production systems, Math. Modelling, (1986), 7, 9-12. · Zbl 0609.92018
[39] O. Arino, M. Kimmel. Asymptotic analysis of a cell cycle model based on unequal division, SIAM J. Appl. Math., (1987), 47(1):128-145. · Zbl 0632.92015
[40] O. Arino, M. Kimmel, M. Zerner. Analysis of a cell population model with unequal division and random transition, Lecture Notes in Pure and Appl. Math., 131 (1991), 3-12. · Zbl 0779.92012
[41] O. Arino, A. Mortabit. Slow oscillations in a model of cell population dynamics, Lecture Notes in Pure and Appl. Math., 131 (1991), 13-25. · Zbl 0774.92013
[42] O. Arino, M. Kimmel. Comparison of approaches to modeling of cell population dynamics, SIAM J. Appl. Math., 53 (1993) (5):1480-1504. · Zbl 0796.92019
[43] O. Arino, M. Kimmel, G. F. Webb. Mathematical modelling of the loss of telomere sequences, J. Theoretical Biology, 177 (1995), 45-57.
[44] O. Arino, E. Sánchez. A survey of cell population dynamics, J. Theor. Med., 1 (1997)(1):35-51. · Zbl 0964.92506
[45] O. Arino, E. Sánchez, G. F. Webb. Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215 (1997), (2):499-513. · Zbl 0886.92020
[46] O. Arino, E. Sánchez, G. F. Webb. Polynomial growth dynamics of telomere loss in a heterogeneous cell population, Dynam. Contin. Discrete Impuls. Systems, Arino, O., Axelrod, D. and Kimmel, M., editors., 3(1997) (3):263-282. · Zbl 0908.92025
[47] J.L. Avila Alonso, C. Bonnet, J. Clairambault, H. Özbay, S.-I. Niculescu, F. Merhi, A. Ballesta, R. P. Tang, J. P. Marie. Delay Systems : From Theory to Numerics and Applications, T. Vyhlídal, J.-F. Lafay, R. Sipahi eds., Advances in Delays and Dynamics series, Springer, New York (2014), 315-328. Analysis of a New Model of Cell Population Dynamics in Acute Myeloid Leukemia · Zbl 1275.93008
[48] S. Balea, A. Halanay, D. Jardan, M. Neamţu, C. A. Safta. Stability Analysis of a Feedback Model for the Action of the Immune System in Leukemia. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 1, 108-32. DOI: . · Zbl 1297.34093
[49] H. T. Banks, C. E. Cole, P. M. Schlosser, H. T. Tran. Modeling and optimal regulation of erythropoiesis subject to benzene intoxication. Math Biosci Eng. (2004);1(1):15-48. Jun · Zbl 1075.34084
[50] A. J. Becker, E. A. McCulloch, J. E. Till. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, (1963), 197(4866), 452-4. (Bibcode:1963Natur.197.452B. doi:)
[51] F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame. An age-and-cyclin-structured cell population model for healthy and tumoral tissues, Journal of Mathematical Biology (2008) 57(1):91-110. · Zbl 1148.92014
[52] F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame. Analysis of a molecular structured population model with polynomial growth for the cell cycle. Mathematical and Computer Modelling (2008), 47(7-8): 699-713. · Zbl 1134.92012
[53] J. Bélair, M.C. Mackey. A model for the regulation of mammalian platelet production, Ann. N.Y. Acad. Sci. (1987), 504, 280-282.
[54] J. Bélair, M.C. Mackey, J.M. Mahaffy. Age-structured and two delay models for erythropoiesis, Math. Biosci. (1995), 128, 317-346. · Zbl 0832.92005
[55] J. Bélair, J.M. Mahaffy. Variable maturation velocity and parameter sensitivity in a model of haematopoiesis. IMA J. Math. Appl. Med Biol. (2001);18(2):193-211. Jun · Zbl 0973.92009
[56] S. Bernard, J. Bélair, M.C. Mackey. Sufficient conditions for stability of linear differential equations with distributed delay, Discr. Contin. Dyn. Sys. B (2001), 1:233-256. · Zbl 0993.34065
[57] S. Bernard, J. Bélair, M.C. Mackey. Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. Theor. Biol. (2003), 223:283-298.
[58] S. Bernard, J. Bélair, M.C. Mackey. Bifurcations in a white-blood-cell production model. C. R. Biologies (2004), 327:201-210.
[59] S. Bernard, F. Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems Series B (2015) 20 (7), 1855-1876. · Zbl 1335.34112
[60] S. Bernard, D. Gonze, B. C˘ajavec, H. Herzel, A. Kramer. Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLOS Comput Biol. (2007) 3:e68.
[61] S. Bernard, L. Pujo-Menjouet, M.C. Mackey. Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data, Biophys. J. (2003), 84:3414-3424.
[62] N. Bessonov, E. Babushkina, S. F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, V. Volpert. Numerical Modelling of Cell Distribution in Blood Flow. Math. Model. Nat. Phenom., 9 (2014), no. 6, 69-84. · Zbl 1333.92021
[63] N. Bessonov, F. Crauste, I. Demin, V. Volpert. Dynamics of erythroid progenitors and erythroleukemia. Mathematical Modeling of Natural Phenomena (2009), 4 (3), 210-232. · Zbl 1207.35187
[64] N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, V. Volpert. Application of Hybrid Models to Blood Cell Production in the Bone Marrow. Math. Model. Nat. Phenom. (2011) 6 (7), 2-12.
[65] N. Bessonov, L. Pujo-Menjouet, V. Volpert. Cell Modelling of Hematopoiesis. Math. Model. Nat. Phenom. (2006) Vol. 1, No. 2, 81-103. · Zbl 1337.92042
[66] D. Bonnet, J.E. Dick. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, (1997), 3 (7), 730-737. doi:. PMID 9212098.
[67] R. Borges, A. Calsina, S. Cuadrado, O. Diekmann. Delay equation formulation of a cyclin-structured cell population model. Journal of Evolution Equations (2014) 14 (4-5), 841-862. · Zbl 1359.92030
[68] A. Bouchnita, N. Eymard, M. Koury, V. Volpert. Initiation of erythropoiesis by BFU-E cells. ITM Web of Conferences 4, 01002 (2015) DOI: .
[69] A. Bouzinab, O. Arino. On the existence and uniqueness for an age-dependent population model with nonlinear growth, Facta Univ. Ser. Math. Inform., (1993) (8):55-68. · Zbl 0845.35004
[70] D. Breda, O. Diekmann, S. Maset, R. Vermiglio. A numerical approach to investigate the stability of equilibria for structured population models. Journal of biological dynamics (2013) 7 (Suppl. 1), 4-20.
[71] G. Brooks, G. Provencher Langlois, J. Lei, M.C. Mackey. Neutrophil dynamics after chemotherapy and G-CSF: The role of pharmacokinetics in shaping the response. J. Theor. Biol. (2012), 315, 97-109. · Zbl 1397.92313
[72] B. Bungart, M. Loeffler, H. Goris, B. Dontje, V. Diehl, W. Nijhof. Differential effects of rekombinant human colony stimulating factor (rh G-CSF) on stem cells in marrow, spleen and peripheral blood in mice, Br. J. Haematol. 76 (1990) 174-179.
[73] F. J. Burns, J. F. Tannock, On the existence of a G_{0}-phase in the cell cycle. Cell Tissue Kinet. (1970), 3:321-334.
[74] C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke. Modeling the Cancer Stem Cell Hypothesis. Math. Model. Nat. Phenom. (2010) Vol. 5, No. 3, 40-62. DOI: . · Zbl 1187.92050
[75] P. Carnot, C. Deflandre. Sur l’activité hémopoïétique du sérum au cours de la régénération du sang. Comptes rendus hebdomadaires des séances de l’Académie des sciences, (1906), 143: 384-432.
[76] V. Chickarmane, T. Enver, C. Peterson. Computational modeling of the hematopoietic erythroid- myeloid switch reveals insights into cooperativity. PLoS Comput. Biol. (2009) 5, doi:.
[77] J. Clairambault. A Step Toward Optimization of Cancer Therapeutics. Physiologically Based Modeling of Circadian Control on Cell Proliferation. IEEE-EMB Magazine (2008), 27(1):20-24.
[78] J. Clairambault. Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments. Mathematical Modelling of Natural Phenomena (2009), 4(3) : 12-67. · Zbl 1165.92021
[79] J. Clairambault, S. Gaubert, T. Lepoutre. Comparison of Perron and Floquet eigenvalues in age structured cell division models. Mathematical Modelling of Natural Phenomena (2009), 4(3) : 183-209. · Zbl 1177.35052
[80] C. Colijn, D.C. Dale, C. Foley, M.C. Mackey. Observations on the pathophysiology and mechanisms for cyclic neutropenia. Math. Model. Natur. Phenom. (2006), 1(2), 45-69. · Zbl 1337.92104
[81] C. Colijn, C. Foley, M.C. Mackey. G-CSF treatment of canine cyclical neutropenia: A comprehensive mathematical model. Exper. Hematol. (2007), 35, 898-907.
[82] C. Colijn, A.C. Fowler, M.C. Mackey. High frequency spikes in long period blood cell oscillations. J. Math. Biol. (2006), 53(4), 499-519. · Zbl 1111.92028
[83] C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis: Periodic chronic myelogenous leukemia, part I. J. Theor. Biol. (2005), 237, 117-132.
[84] C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis: Cyclical neutropenia, part II. J. Theor. Biol. (2005), 237, 133-146.
[85] C. Colijn, M.C. Mackey. Bifurcation and bistability in a model of hematopoietic regulation, SIAM J. App. Dynam. Sys. (2007), 6(2), 378-394. · Zbl 1210.37033
[86] F. Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering (2006), 3 (2), 325-346. · Zbl 1110.34052
[87] F. Crauste. Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch. Math. Model. Nat. Phenom. (2009) Vol. 4, No. 2, 28-47. · Zbl 1186.34117
[88] F. Crauste. Stability and Hopf bifurcation for a first-order linear delay differential equation with distributed delay, in Complex Time Delay Systems (Ed. F. Atay), Springer, 1st edition, (2010) 320 p., ISBN: 978-3-642-02328-6. · Zbl 1243.34104
[89] F. Crauste. A review on local asymptotic stability analysis for mathematical models of hematopoietic with delay and delay-dependent coefficients. Annals of the Tiberiu Popoviciu Seminar of functionnal equations, approximation and convexity (2011) 9, 121-143. · Zbl 1326.92009
[90] F. Crauste, I. Demin, O. Gandrillon, V. Volpert. Mathematical study of feedback control roles and relevance in stress erythropoiesis. Journal of Theoretical Biology, (2010) 263 (3), 303-316. · Zbl 1406.92047
[91] F. Crauste, L. Pujo-Menjouet, S. GÃľnieys, C. Molina, O. Gandrillon. Adding Self-Renewal in Committed Erythroid Progenitors Improves the Biological Relevance of a Mathematical Model of Erythropoiesis. Journal of Theoretical Biology (2008), 250, 322-338. · Zbl 1397.92081
[92] F. Crauste, M. Adimy. Bifurcation dans un modÃĺle non-linÃľaire de production du sang. Comptes-rendus de la 7ième Rencontre du Non-linéaire, Non-linéaire Publications, Paris (2004), 73-78.
[93] R. Crabb, M.C. Mackey, A. Rey. Propagating fronts, chaos and multistability in a cell replication model, Chaos (1996) 6, 477-492.
[94] M. Craig, A.R. Humphries, F. Nekka, J. Belair, J. Li, M.C. Mackey. Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: Mathematical modelling guides dose optimisation to minimize neutropenia. J. Theor. Biol. (2015), 385, 77-89. · Zbl 1343.92215
[95] J. M. Cushing. Existence and stability of equilibria in age-structured population dynamics. Math. Biol. (1984), 20, 259-276. · Zbl 0553.92014
[96] D.C. Dale, M.C. Mackey. Understanding, treating and avoiding hematological disease: Better medicine through mathematics?. Bulletin of Mathematical Biology (2015), 77, 739-757. · Zbl 1334.92194
[97] G. De Haan, C. H. Engel, B. Dontje, W. Nijhof, M. Loeffler. Mutual inhibition of murine erythropoiesis and granulopoiesis during combined erythropoietin, granulocyte colony-stimulating factor and stem cell factor adminstration: In vivo interactions and dose response surfaces. Blood 12 Vol 84 (1994) 4157-4163.
[98] G. De Haan, B. Dontje, W. Nijhof, M. Loeffler. Effects of Continuous Stem Cell Factor Administration on Normal and Erythropoietin- Stimulated Murine Hemopoiesis. Experimental Results and Model Analysis, Stem Cells (Dayt) 13 (1995) 65-76
[99] G. De Haan, C. Engel, B. Dontje, M. Loeffler, W. Nijhof. Hematoxicity by prolonged etoposide adminstration to mice can be prevented by simultaneous growth factor therapy, Cancer Research 55 (1995) 324-329.
[100] G. De Haan, B. Dontje, C. Engel, M. Loeffler, W. Nijhof. The kinetics of murine hemopoietic stem cells in vivo in response to prolonged increased mature blood cell production, induced by granulocyte colony-stimulating factor. Blood 86: 8 (1995) 2986-2992.
[101] G. De Haan, B. Dontje, C. Engel, M. Loeffler, W. Nijhof. In vivo effects of interleukin-11 and stem cell factor in combination with erythropoietin in the regulation of erythropoiesis. British Journal of Hematology (1995) 90: 4, 783-790.
[102] I. Demin, F. Crauste, O. Gandrillon, V. Volpert. A multi-scale model of erythropoiesis. Journal of Biological Dynamics, (2010) 4 (1), 59-70. · Zbl 1315.92018
[103] P. K. Dhar, A. Mukherjee, D. Majumder. Difference Delay Equation-Based Analytical Model of Hematopoiesis. Automatic Control of Physiological State and Function Vol. 1 (2012), Article ID 235488, 11 pages doi:.
[104] W. Desch, W. Schappacher, G. F. Webb. Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory and Dynamical Systems 17, (1997), 1-27. · Zbl 0910.47033
[105] O. Diekmann, H. J. A. M. Heijmans, H. R. Thieme. On the stability of the cell size distribution. J. Math. Biol., (1984) 19:227-248. · Zbl 0543.92021
[106] O. Diekmann, K. Korvasovà. A didactical note on the advantage of using two parameters in Hopf bifurcation studies. Journal of biological dynamics (2013) 7 (Suppl. 1), 21-30.
[107] D. Dingli, A. Traulsen, J. M. Pacheco. Stochastic dynamics of hematopoietic tumor stem cells. Cell Cycle (2007), 6 : 461-6.
[108] D. Dingli, J. M. Pacheco. Ontogenic growth of the haemopoietic stem cell pool in humans. Proc R Sci B (2007), 274 : 2497-501.
[109] M. D’Inverno, R. Saunders. Agent-Based Modelling of Stem Cell Self-organisation in a Niche. In : Lecture Notes in Computer Science. Berlin/Heidelberg : Springer, (volume 3464/2005), 2008.
[110] M. Doumic. Analysis of a Population Model Structured by the Cells Molecular Content. Math. Model. Nat. Phenom. (2007) Vol. 2, No. 3, 121-152. · Zbl 1337.92174
[111] M. Doumic, A. Marciniak-Czochra, B. Perthame, J.P. Zubelli. A structured population model of cell differentiation. SIAM Journal on Applied Mathematics (2011) 71 (6), 1918-1940. · Zbl 1235.35030
[112] I. Drobnjak, A.C. Fowler, M.C. Mackey. Oscillations in a maturation model of blood cell production. SIAM J. Appl. Math. (2006), 66(6), 2027-2048. · Zbl 1197.76164
[113] A. Ducrot, V. Volpert. On a Model of Leukemia Development with a Spatial Cell Distribution. Math. Model. Nat. Phenom. (2007) Vol. 2, No. 3, pp. 101-120. · Zbl 1337.92107
[114] A. Ducrot, F. LeFoll, P. Magal, H. Murakawa, J. Pasquier, G. F. Webb. An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition, Math. Mod. Meth. Appl. Sci. Vol.21 (2011), DOI No: , 871-892. · Zbl 1221.35204
[115] X. Dupuis. Optimal Control of Leukemic Cell Population Dynamics. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 1, pp. 4-26. DOI: . · Zbl 1287.49043
[116] J. Dyson, E. Sanchez, R. Villella-Bressan, G. F. Webb. Stabilization of telomeres in nonlinear models of proliferating cell lines. J Theor Biol. (2007);244(3):400-8. Feb 7
[117] J. Dyson, R. Villella-Bressan, G. F. Webb. A singular transport equation modelling a proliferating maturity structured cell population, Canadian Appl. Math. Quart., Vol.4, No.1 (1996), 65-95. · Zbl 0855.92019
[118] J. Dyson, R. Villella-Bressan, G. F. Webb. Hypercyclicity of a transport equation with delays, J. Nonl. Anal. Theory Meth. Appl., Vol. 29, No. 12 (1997), 1343-1351. · Zbl 0899.34046
[119] J. Dyson, R. Villella-Bressan, G. F. Webb. A maturity structured model of a population of proliferating and quiescent cells, Archives of Control Sciences, Vol. 9 (XLV) No. 1-2 (1999), 201-225. · Zbl 1152.35333
[120] J. Dyson, R. Villella-Bressan, G. F. Webb. An age and maturity structured model of cell population dynamics, Mathematical Models in Medical and Health Science, Proceedings of the Conference on Mathematical Models in Medical and Health Sciences, Vanderbilt University Press, (1999), 99-116. · Zbl 0959.92011
[121] J. Dyson, R. Villella-Bressan, G. F. Webb. A Nonlinear age and maturity structured model of population dynamics. I. Basic Theory. J. Math. Anal. Appl. Vol. 242 (2000), 93-104. · Zbl 0978.92019
[122] J. Dyson, R. Villella-Bressan, G. F. Webb. A Nonlinear age and maturity structured model of population dynamics. II. Chaos. J. Math. Anal. Appl. Vol. 242 (2000), 255-270. · Zbl 0978.92020
[123] J. Dyson, R. Villella-Bressan, G. F. Webb. Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci., Vol. 177-178 (2002), 73-83. · Zbl 0998.92012
[124] J. Dyson, R. Villella-Bressan, G. F. Webb. A semilinear transport equation with delays. Int. J. Math. Math. Sci. Vol. 6, No. 32 (2003), 2011-2026. · Zbl 1028.35158
[125] C. Engel, M. Loeffler, H. Franke, S. T. Schmitz. Endogenous thrombopoietin serum levels during multicycle chemotherapy British Journal of Haematology (1999) 105, 832-838.
[126] C. Engel, M. Scholz, M. Loeffler. A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. BLOOD (2004), 104 (8) 2323-2331.
[127] N. Eymard · N. Bessonov O. Gandrillon · M. J. Koury V. Volpert. The role of spatial organization of cells in erythropoiesis J Math Biol. (2015) Jan;70(1-2):71-97. doi: . · Zbl 1350.92015
[128] S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste. Modelling erythroblastic islands: using a hybrid model to assess the function of central macrophage. J. Theo. Biol., (2012) 298, 92-106. · Zbl 1397.92085
[129] C. Foley, S. Bernard, M.C. Mackey. Cost-effective G-CSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses. J. Theor. Biol. (2006), 238:754-763.
[130] C. Foley, M.C. Mackey. Dynamic hematological disease: A review. J. Math. Biol. (2009), 58, 1, 285-322. · Zbl 1161.92338
[131] C. Foley, M.C. Mackey. Mathematical model for G-CSF administration after chemotherapy. J. Theor. Biol. (2009), 257, 27-44. DOI:. · Zbl 1400.92251
[132] J. Foo, M. W. Drummond, B. Clarkson, T. Holyoke, F. Michor. Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib. PLoS Computational Biology (2009) 5, e10000503. (PDF)
[133] P. Fortin M.C. Mackey. Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications, Br. J. Haematol. (1999), 104, 336-345.
[134] A. Fowler, M.C. Mackey. Relaxation oscillations in a class of delay differential equations. SIAM J. Appl. Math. (2002), 63, 299-323. · Zbl 1095.34543
[135] J. Galle J, G. Aust, G. Schaller, T. Beyer, D. Drasdo. Individual cell-based models of the spatio-temporal organisation of multicellular systems - achievements and limitations. Cytometry (2006) 69A : 704-10.
[136] P. Getto, A. Marciniak-Czochra. Mathematical Modelling as a Tool to Understand Cell Self-renewal and Differentiation Mammary Stem Cells: Methods and Protocols (2015) 247-266.
[137] I. Glauche, M. Cross, M. Loeffler, I. Roeder. Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem cells (Dayton, Ohio) 25 (2007), 1791-9.
[138] I. Glauche, M. Horn, I. Roeder. Leukaemia stem cells: hit or miss? British Journal of Cancer 96 (2007), 677-9.
[139] I. Glauche, K. Horn, M. Horn, L. Thielecke, M. A. Essers, A. Trumpp, I. Roeder. Therapy of chronic myeloid leukaemia can benefit from the activation of stem cells: simulation studies of different treatment combinations. British journal of cancer 106 (2012) 1742-52.
[140] I. Glauche, I. Roeder. In silico hematology. Systembiologie.de 42 (2014) 19.
[141] H. Goris, M. Loeffler, B. Bungart, S. Schmitz, W. Nijhof, Hemopoiesis during thiamphenicol treatment. I. Stimulation of stem cells during eradication of intermediate cell stages, Exp. Hematol., 17 (1989), 957-961.
[142] H. Goris, B. Bungart, M. Loeffler, W. Nijhof. Migration of stem cells and progenitors between marrow and spleen following a thiamphenicol treatment of mice, Exp. Hematol. 18 (1990) 400-407.
[143] A. Grabosch, G. F. Webb. Asynchronous exponential growth in transition probability models of the cell cycle, SIAM J. Math. Anal. 18, (1987), 4, 897-907. No. · Zbl 0625.92013
[144] M. Gyllenberg. The age structure of populations of cells reproducing by asymmetric division, in Mathematics in biology and medicine, V. Capasso, E. Grosso and S.L. Paveri-Fontana (Eds.), Springer Lecture Notes in Biomathematics, (1985), 57, 320-327. · Zbl 0569.92019
[145] M. Gyllenberg, H. J. A. M. Heijmans. An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. Anal. (1987), 18, 74-88. · Zbl 0634.34064
[146] M. Gyllenberg, G. F. Webb. Age-size structure in populations with quiescence. Math. Biosci., (1987) 86(1):67-95. · Zbl 0632.92014
[147] M. Gyllenberg, G. F. Webb. Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl. 167, 2 (1992), 443-467. No. · Zbl 0818.47064
[148] H. Haeno, R. L. Levine, D. G. Gilliland, F. Michor. A progenitor cell origin of myeloid malignancies. Proc. Natl. Acad. Sci. U S A (2009) 106, 16616-16621.
[149] A. Halanay, D. Cândea, I. R. Rădulescu. Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 1, 58-78. DOI: .
[150] D. Hasenclever, O. Brosteanu, T. Gerike, M. Loeffler. Modelling of chemotherapy: The effective dose approach. Ann. Hematol. (2001), 80: B89-B94.
[151] C. Haurie, D.C. Dale, M.C. Mackey. Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood (1998), 92, 2629-2640.
[152] C. Haurie, D.C. Dale, M.C. Mackey. Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood (1998), 92, 2629-2640.
[153] C. Haurie, D.C. Dale, M.C. Mackey. Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic and cyclical neutropenic patients before and during treatment with G-CSF, Exper. Hematol. (1999), 27, 401-409.
[154] C. Haurie, D.C. Dale, R. Rudnicki, M.C. Mackey. Modeling of complex neutrophil dynamics in the grey collie. J. theor. Biol. (2000), 204, 505-519.
[155] C. Haurie, R. Person, D.C. Dale, M.C. Mackey. Hematopoietic dynamics in grey collies, Exper. Hematol. (1999), 27, 1139-1148.
[156] T. Hearn, C. Haurie, M.C. Mackey. Cyclical neutropenia and the peripheral control of white blood cell production, J. Theor. Biol. (1998), 192, 167-181.
[157] R. Hoffman, E.J. Benz, L.E. Silberstein, H. Heslop, J. Weitz and J. Anastasi. Hematology: Basic Principles and Practice, 6th edition. Churchill Livingstone, Elsevier, 2102.
[158] M. Horn, I. Glauche, M. C. Müller, R. Hehlmann, A. Hochhaus, M. Loeffler, I. Roeder. Model-based decision rules reduce the risk of molecular relapse after cessation of tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Blood 121 (2013) 378-84.
[159] M. Horn, M. Loeffler, I. Roeder. Mathematical modeling of genesis and treatment of chronic myeloid leukemia. Cells, tissues, organs 188 (2008), 236-47.
[160] S. Huang, Y. P. Guo, G. May, T. Enver. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. biol. (2007), 305, 695-713.
[161] E. V. Hulse. Recovery of Erythropoiesis after Irradiation: A Quantitative Study in the Rat. Brit. J. Haemat., (1963), 9, 365-375.
[162] A. Krinner, I. Roeder, M. Loeffler, M. Scholz. Merging concepts - coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC systems biology 7 (2013) 117.
[163] M. Johnson, G. F. Webb. Resonances in age structured cell population models of periodic chemotherapy, Internat. J. Appl. Sci. Comp., Vol. 3, No. 1 (1996), 57-67.
[164] N. D. Kazarinoff, P. van den Driessche, P. Control of oscillations in hematopoiesis, Science (1979), 203, 1348-1350. · Zbl 1225.93086
[165] E. Kelemen, I. Cserhati, B. Tanos. Demonstration and some properties of human thrombopoietin in thrombocythemic sera, Acta Haematol., (1958), 20, 350-355.
[166] E. A. King-Smith, A. Morley. Computer simulation of granulopoiesis: normal and impaired granulopoiesis, Blood (1970), 36, 254-262.
[167] J. Kirk, J. S. Orr, C. S. Hope. A Mathematical Analysis of Red Blood Cell and Bone Marrow Stem Cell Control Mechanisms. British Journal of Haematology, (1968), 15, 1, 35-46.
[168] L. Kold-Andersen, M.C. Mackey. Resonance in periodic chemotherapy: A case study of acute myelogenous leukemia. J. Theor. Biol. (2001), 209, 113-130.
[169] C. Kou, M. Adimy, A. Ducrot. On the dynamics of an impulsive model of hematopoiesis. Journal of Mathematical Modelling and Natural Phenomena (2009) 4(2), 89-112. · Zbl 1178.34102
[170] M. Koury, M. Bondurant, Erythropoietin retards DNA breakdown and prevents pro- grammed death in erythroid progenitor cells, Science, 248 (1990), pp. 378-381.
[171] P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer, V. Volpert. Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J. App. Math. (2011) 71 (6), 2246-2268. · Zbl 1233.92034
[172] A. Lasota, M. C. Mackey, The Extinction of Slowly Evolving Dynamical Systems, J. Math. Biology (1980), 10, 333-345 · Zbl 0454.92005
[173] A. Lasota, M.C. Mackey, M. Wazewska-Czyzewska, Minimizing therapeutically induced anemia, J. Math. Biol. (1981) 13, 149-158. · Zbl 0473.92003
[174] A. Lasota, M.C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. (1984) 19, 43-62. · Zbl 0529.92011
[175] A. Lasota, M. Ważewska-Czyżewska, Matematyczne problemy dynamiki układu krwinek czerwonych (Mathematical problems of the dynamics of red blood cell population), (in Polish), Matematyka Stosowana (1976), 6:23-40.
[176] A. Lasota, K. Loskot, M.C. Mackey. Stability properties of proliferatively coupled cell replication models, Acta Biotheor., 39 (1991), 1-14.
[177] A. Lasota, M.C. Mackey. Cell division and the stability of cellular replication, J. Math. Biol., 38, (1999), 241-261. · Zbl 0982.92011
[178] U. Ledzewicz, H. Schättler. A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy. Math. Model. Nat. Phenom. Vol. 9, No. 4, (2014), 131-152. DOI: . · Zbl 1321.92057
[179] F. Lévi, A. Altinok, J. Clairambault, A. Goldbeter. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil. Trans. Roy. Soc. A (2008), 366 (1880), 3575-3598.
[180] J. Lei, M.C. Mackey. Stochastic differential delay equation, moment stability, and appplication to hematopoietic stem cell regulation system. SIAM J. Appl. Math., 67(2) (2007), 387-407. · Zbl 1167.34036
[181] J. Lei, M. C. Mackey. Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia. J. Theor. Biol., 270 (2011), 143-153. · Zbl 1331.92068
[182] J. Lei, M. C. Mackey. Understanding and treating cytopenia through mathematical modeling in Systems Biology Approach to Blood (ed. S. Corey, M. Kimmel, J. Leonard), Springer-Verlag (2013).
[183] A. Liso, F. Castiglione, A. Cappuccio, F. Stracci, R. F. Schlenk, S. Amadori, C. Thiede, S. Schnittger, P. J. M. Valk, K. Doehner, M. F. Martelli, M. Schaich, J. Krauter, A. Ganser, M. P. Martelli, N. Bolli, B. Loewenberg, T. Haferlach, G. Ehninger, F. Mandelli, H. Doehner, F. Michor, B. Falini. A one-mutation mathematical model can explain the age incidence of AML with mutated nucleophosmin (NPM1). Haematologica, 93 (2008), 1219-1226.
[184] M. Loeffler. Modelling the effects of continuous irradiation on murine haematopoiesis. British Journal of Radiology, (S26) (2002), 188-197.
[185] M. Loeffler, H. E. Wichmann, A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results, Cell Tissue Kinet., 13 (1980), 543-561.
[186] M. Loeffler, P. Herkenrath, H. E. Wichmann, B.I. Lord, M.J. Murphy, The kinetics of hematopoietic stem cells during and after hypoxia - A model analysis, Blood, 49, (1984), 427-439.
[187] M. Loeffler, B. Bungart, H. Goris, S. Schmitz, W. Nijhof, Hemopoiesis during thiamphenicol treatment. II. A theoretical analysis shows consistency of new new data with a previously hypothesized model of stem cell regulation. Exp. Hematol. 17 (1989), 962-967.
[188] M. Loeffler, K. Pantel, H. Wulff, H. E. Wichmann, A mathematical model of erythropoiesis in mice and rats, Part 1. Structure of the model, Cell Tissue Kinet., 22 (1989), 13-30.
[189] M. Loeffler, K. Pantel, A mathematical model of erythropoiesis suggests an altered plasma volume control as cause for anemia in aged mice. Exp. Gerontology, 25 (1990), 483-495.
[190] M. Loeffler, I. Roeder. Tissue Stem Cells: definition, plasticity, heterogeneity, self organization and models - a conceptual approach. Cells Tissues Organs, 171 (1) (2002), 8-26.
[191] M. Loeffler, I. Roeder. Conceptual models to understand tissue stem cell organization. Current Opinion in Hematology, 11, (2004), 81-87 .
[192] M. Loeffler, A. D. Tsodikov, A. Y. U. Yakolev, A cure model with time-changing risk factor: An application to the analysis of secondary leukemia. Statistics in Medicine, 17 (1998), 27-40.
[193] M.C. Mackey. Mathematical models of hematopoietic cell replication and control, pp. 149-178 in The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids (H.G. Othmer, F.R. Adler, M.A. Lewis, and J.C. Dallon eds.) Prentice Hall, 1997.
[194] M.C. Mackey. Cell kinetic status of hematopoietic stem cells. Cell Prolif., 34, (2001), 71-83.
[195] M.C. Mackey, U. an der Heiden. Dynamic diseases and bifurcations in physiological control systems, Funk. Biol. Med., 1 (1982), 156-164.
[196] M. C. Mackey, A.A.G. Aprikyan, D.C. Dale. The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Prolif., 36 (2003), 27-34.
[197] M.C. Mackey, P. Dörmer. Enigmatic hemopoiesis, in Biomathematics and Cell Kinetics (ed. M. Rotenberg), Elsevier/North Holland, (1981), 87-103.
[198] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science, 197 (1977), 287-289. · Zbl 1383.92036
[199] M.C. Mackey, P. Dörmer, Continuous maturation of proliferating erythroid precursors. Cell and Tissue Kinetics, 15, (1982), 381-392.
[200] M.C. Mackey, J. Milton. Feedback, delays, and the origins of blood cell dynamics. Comm. on Theor. Biol., 1 (1990), 299-327.
[201] M.C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu. Periodic oscillations of blood cell populations in chronic myelogenous leukemia. SIAM J. Math. Anal., 38(1), (2006), 166-187. · Zbl 1163.34055
[202] M.C. Mackey, R. Rudnicki. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Biol., 33 (1994), 89-109. · Zbl 0833.92014
[203] M.C. Mackey, R. Rudnicki. A new criterion for the global stability of simultaneous cell replication and maturation processes. J. Math. Biol., 38 (1999), 195-219. · Zbl 0980.92008
[204] J.M. Mahaffy, J. Bélair, M.C. Mackey. Hematopoietic model with moving boundary condition and state dependent delay. J. Theor. Biol., 190, (1998), 135-146.
[205] A. Marciniak-Czochra, A. D. Ho, W. Jäger T. Stiehl, W. Wagner. Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev., 18(3) (2009), 377-85. doi: .
[206] A. Marciniak-Czochra, T. Stiehl, W. Wagner. Modeling of replicative senescence in hematopoietic development. Aging (Albany NY), 1 (8) (2009), 723-732.
[207] A. Marciniak-Czochra, T. Stiehl. Mathematical models of hematopoietic reconstitution after stem cell transplantation Model Based Parameter Estimation. Bock, H.G., Carraro, T., äger, W., Körkel, S., Rannacher, R., Schlöder, J.P., (Eds.) Contributions in Mathematical and Computational Sciences, Vol. 3, Springer Verlag, (2013), 191-206.
[208] A. Maximow. The Lymphocyte as a stem cell common to different blood elements in embryonic development and during the post-fetal life of mammals. Originally in German: Folia Haematologica 8. (1909), 125-134. (English translation: Cell Ther. Transplant.(2009), 1:e.000032.01. doi:).
[209] D. Metcalf. The granulocyte-macrophage colony-stimulating factors. Science, (1985), 229(4708): 16-22. doi:, PMID 2990035.
[210] J. A. J. Metz, O. Diekmann, editors. The dynamics of physiologically structured populations, volume 68 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1986. Papers from the colloquium held in Amsterdam, 1983.
[211] P. Michel. Optimal Proliferation Rate in a Cell Division Model. Math. Model. Nat. Phenom. Vol. 1, No. 2, (2006), 23-44. · Zbl 1337.92048
[212] F. Michor. Quantitative approaches to analyzing imatinib-treated chronic myeloid leukemia. Trends in Pharmacological. Sciences, 28 (2007), 197-199.
[213] F. Michor. Chronic myeloid leukemia blast crisis arises from progenitors. Stem Cells, 25 (2007), 1114-1118.
[214] F. Michor. The long-term response to imatinib treatment of CML. British Journal of Cancer, 96 (2007), 679-680.
[215] F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C. L Sawyers, M. A. Nowak Dynamics of chronic myeloid leukemia. Nature, 435 (2005), 1267-1270.
[216] F. Michor, Y. Iwasa, M. A. Nowak. The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. Proc. Natl. Acad. Sci. U S A (2006) 103, 14931-14934.
[217] J. Milton, M.C. Mackey. Periodic haematological diseases: Mystical entities or dynamical disorders?, J. Roy. Coll. Phys. (Lond) 23 (1989), 236-241.
[218] C. L. Mouser, E. S. Antoniou, J. Tadros, E. K. Vassiliou, A model of hematopoietic stem cell proliferation under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing agent. Theoretical Biology and Medical Modelling (2014) 11:4 DOI: .
[219] T. Niederberger, H. Failmezger, D. Uskat, D. Poron, I. Glauche, N. Scherf, I. Roeder, T. Schroeder, A. Tresch. Factor graph analysis of live cell imaging data reveals mechanisms of cell fate decisions. Bioinformatics (Oxford, England) (2015).
[220] W. Nijhof, H. Goris, B. Dontje, J. Dresz, M. Loeffler. Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis, Experimental Hematology 21 (1993), 496-501.
[221] G. C. Nooney. Iron kinetics and erythron development. Biophysical Journal, vol. 5, (1965), 755-765.
[222] I. Østby, L. S. Rusten, G. Kvalheim, P. Grøttum. A mathematical model for reconstitution of granulopoiesis after high dose chemotherapy with autologous stem cell transplantation. J. Math. Biol., 47(2) (2003), 101-36. · Zbl 1023.92012
[223] I. Østby, R. Winther. Stability of a model of human granulopoiesis using continuous maturation. J. Math. Biol., 49(5) (2004), 501-36. · Zbl 1055.92028
[224] H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault. Stability analysis of cell dynamics in leukemia. Mathematical Modelling of Natural Phenomena, 7(1) (2012), 203-234. · Zbl 1242.93114
[225] K. Pantel, M. Loeffler, B. Bungart, H. E. Wichmann, A mathematical model of erythropoiesis in mice and rats. Part 4. Differences between bone marrow and spleen, Cell Tissue Kinet. 23 (1990), 283-297.
[226] J. F. Perez, C. P. Malta, C. P., F. A. B. Coutinho. Qualitative analysis of oscillations in isolated populations of flies. J. Theoret. Biol., 71 (1978), 505-514.
[227] J. Pimentel. Agent Based Model for the Production Mechanism and Control of Blood Cells in the Human Body. Proceedings of The National Conference On Undergraduate Research (NCUR), The University of North Carolina at Asheville, North Carolina, 2006.
[228] A. Plesa, G. Ciuperca V. Louvet, L. Pujo-Menjouet, S. Génieys, C. Dumontet, X. Thomas, V. Volpert. Diagnostics of the AML with immunophenotypical data. Math. Model. Nat. Phenom. Vol. 1, No. 2, (2006), 104-123. · Zbl 1337.62339
[229] G. Prindull, B. Prindull, N. Meulen. Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand. 67(4) (1978), 413-6.
[230] L. Pujo-Menjouet, M. C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus Biologiques (2004), 327, 235-244.
[231] L. Pujo-Menjouet, S. Bernard, M.C. Mackey. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J. Appl. Dyn. Sys., (2005), 4:312-332. · Zbl 1110.34050
[232] H. Quastler. The analysis of cell population kinetics. Cell Proliferation, Ed. by L. T. Lanierton and R. J . M. Fry, p. 18. Blackwell Scientific Publications, Oxford (1963), 18-34.
[233] H. Quastler, F. G. Sherman. Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res., Jun; 17(3) (1959), 420-438.
[234] N. M. Rashidi, M. K. Scott, N. Scherf, A. Krinner, J. S. Kalchschmidt, K. Gounaris, M.E. Selkirk, I. Roeder, C. Lo Celso. In vivo time-lapse imaging of mouse bone marrow reveals differential niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood, 124(1) (2014), 79-83.
[235] U. Reincke, M. Loeffler, H. E. Wichmann, B. Harrisson. The kinetics of granulopoiesis in long term mouse bone marrow culture. Part I. Int.J.Cell Cloning, 2 (1984), 394-407.
[236] C. Roberts, L. Kean, D. Archer, C. Balkan, L. L. Hsu. Murine and math models for the level of stable mixed chimerism to cure beta-thalassemia by nonmyeloablative bone marrow transplantation. Ann. N.Y. Acad. Sci. 1054 (2005), 423-8.
[237] I. Roeder. Quantitative stem cell biology - Computational studies in the hematopoietic system. Curr. Opin. Hematol., 13 (4) (2006), 222-228.
[238] I. Roeder, K. Braesel, R. Lorenz, M. Loeffler. Stem cell fate analysis revisited: interpretation of individual clone dynamics in the light of a new paradigm of stem cell organization. Journal of biomedicine, biotechnology, (2007), 84656.
[239] I. Roeder, G. de Haan, C. Engel, W. Nijhof, B. Dontje, M. Loeffler. Interactions of Erythropoietin, Granulocyte Colony-Stimulating Factor, Stem Cell Factor, and Interleukin-11 on Murine Hematopoiesis During Simultaneous Administration, Blood, 91 9 (1998), 3222-3229.
[240] I. Roeder I, M. d’Inverno. New experimental and theoretical investigations of hematopoietic stem cells and chronic myeloid leukemia. Blood cells, molecules and diseases 43 (2009), 88-97.
[241] I. Roeder, J. Galle, M. Loeffler. Theoretical concepts of tissue stem cell organization. Tissue Stem Cells, Edited by Christopher S . Potten, Robert B . Clarke, James Wilson, Andrew G . Renehan CRC Press (2006), 17-35.
[242] I. Roeder and I. Glauche. Towards an understanding of lineage specification in hematopoietic stem cells: A mathematical model for the interaction of transcription factors GATA-1 and PU.1. J. Theor. Biol., 241 4 (2006), 852-865.
[243] I. Roeder, I. Glauche. Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription factors GATA-1 and PU.1. Journal of theoretical biology, 241 (2006), 852-65.
[244] I. Roeder, I. Glauche Pathogenesis, treatment effects, and resistance dynamics in chronic myeloid leukemia-insights from mathematical model analyses. Journal of molecular medicine (Berlin Germany), 86 (2008), 17-27.
[245] I. Roeder, M. Herberg, M. Horn. An “age”-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia. Bulletin of mathematical biology, 71 (2009), 602-26. · Zbl 1182.92043
[246] I. Roeder, M. Kamminga, K. Braesel, B. Dontje, G. de Haan, M. Loeffler. Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization. Blood, 15 2 (2005), 609-616.
[247] I. Roeder, M. Horn, I. Glauche, A. Hochhaus, M. C. Mueller, M. Loeffler. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nature medicine, 12 (2006), 1181-4.
[248] I. Roeder, K. Horn, H. B. Sieburg, R. Cho, C. Muller-Sieburg, M. Loeffler. Characterization and quantification of clonal heterogeneity among hematopoietic stem cells: a model-based approach. Blood, 112 (2008), 4874-83
[249] I. Roeder, M. Loeffler. A Novel Dynamic Model of Hematopoietic Stem Cell Organization Based on the Concept of Within-Tissue Plasticity. Experimental Hematology, 30 (8) (2002), 853-861.
[250] I. Roeder, M. Loeffler, P. J. Quesenberry, G. A. Colvin, J. F. Lambert. Quantitative tissue stem cell modeling. Blood, 102 (3) (2003), 1143-1144.
[251] I. Roeder, R. Lorenz. Asymmetry of stem cell fate and the potential impact of the niche: observations, simulations, and interpretations. Stem cell reviews 2 (2006), 171-80.
[252] S. I. Rubinow. A Maturity-Time Representation for Cell Populations. Biophys J., Oct; 8(10) (1968), 1055-1073. doi:
[253] S. I. Rubinow, J. L. Lebowitz. A mathematical model of neutrophil production and control in normal man. J. Math. Biol., 1 (1975), 187-225. · Zbl 0302.92002
[254] R. Rudnicki. Global stability of a nonlinear model of cellular populations, J. Tech. Phys., 38 (1997), 333-336.
[255] R. Rudnicki. Chaoticity of the blood cell production system. Chaos, 19(4) (2009), 043112. doi: . · Zbl 1311.92067
[256] R. Rudnicki, K. Pichór. Asymptotic behaviour of Markov semigroups and applications to transport equations, Bull. Polish Acad. Sci. Math., 45 (1997), 379-397. · Zbl 0909.47032
[257] A. Safarishahrbijari, A. Gaffari. Parameter identification of hematopoiesis mathematical model - periodic chronic myelogenous leukemia. Wspolczesna Onkol, 17 (1) (2013), 73-77, DOI: .
[258] E. Sánchez, O. Arino, M. Kimmel. Noncompact semigroups of operators generated by cell kinetics models, Differential Integral Equations, 4 (6) (1991), 1233-1249. · Zbl 0731.47043
[259] M. Santillan, J.M. Mahaffy, J. Bélair, M.C. Mackey. Regulation of platelet production: The normal response to perturbation and cyclical platelet disease. J. theor. Biol., 206, (2000), 585-603.
[260] S. Scheding, M. Loeffler, V. Anselsetter, H. E. Wichmann. A mathematical approach to benzo[a]pyrene-induced hematotoxicity, Arch Toxicology, 66 (1992), 546-550.
[261] S. Schirm, C. Engel, M. Loeffler, M. Scholz. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLOS ONE, Vol. 8 (6), (2013), e65630.
[262] S. Schirm, C. Engel, M. Loeffler, M. Scholz. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment. Theoretical Biology and Medical Modelling, 11, (2014), 24.
[263] S.Schirm, C. Engel, M. Loeffler, M. Scholz. Modelling chemotherapy effects on granulopoiesis. BMC Syst Biol., (2014) 8(1), 138.
[264] S. Schmitz, M. Loeffler, J. B. Jones, R. D. Lange, H. E. Wichmann. Synchrony of marrow maturation as origin of cyclic hemopoiesis, Cell Tissue Kinet., 23 (1990), 425-441.
[265] S. Schmitz, H. Franke, M. Loeffler, H. E. Wichmann, V. Diehl. Reduced variance of bone-marrow transit time of granulopoiesis - a possible pathomechanism of human cyclic neutropenia. Cell Prolif., 27 (1994), 655-667.
[266] S. Schmitz, H. Franke, M. Loeffler, H. E. Wichmann, V. Diehl. Model analysis of the contrasting effects of GM-CSF and G-CSF treatment on peripheral blood neutrophils observed in three patients with childhood-onset cyclic neutropenia. British Journal of Hematology, 95 4 (1996), 616-625.
[267] M. Scholz, C. Engel, M. Loeffler. Modelling Human Granulopoiesis under Polychemotherapy with G-CSF Support. Journal of Mathematical Biology, 10.1007 (2004), 285-295. · Zbl 1062.92040
[268] M. Scholz, C. Engel, M. Loeffler. Model-based design of chemotherapeutic regimens that account for heterogeneity in leucopoenia. British Journal of Haematology, 132 (2006), 723-735.
[269] M. Scholz, A. Gross, M. Loeffler. A biomathematical model of human thrombopoiesis under chemotherapy. Journal of Theoretical Biology, Vol. 264 (2), (2010), 287-300. · Zbl 1406.92277
[270] H. Schwegler, M.C. Mackey. Fluctuations in circulating cell numbers following chemotherapy or bone marrow transplant, J. Math. Biol., 32 (1994), 761-770. · Zbl 0808.92017
[271] L. Sharney, L. R. Wasserman, L. Schwartz, D. Tendler. Multiple pool analysis as applied to erythro-kinetics. Ann. N. Y. Acad. Sci., 10 108 (1963), 230-49.
[272] E. Shochat, V. Rom-Kedar, L. A. Segel. G-CSF control of neutrophils dynamics in the blood. Bull Math Biol., 69(7) (2007), 2299-338. · Zbl 1296.92119
[273] J. A. Smith, L. Martin. Do cells cycle?, Proc. Natl. Acad. Sci. USA, 70 (1973), 1263-1267.
[274] T. Stiehl, N. Baran, A. D. Ho, A. Marciniak-Czochra. Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. Journal of The Royal Society Interface, 11 (2014) (94), 20140079.
[275] T. Stiehl, N. Baran, A. D. Ho, A. Marciniak-Czochra. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer research, 75 (6), (2015), 940-949.
[276] T. Stiehl, A. Marciniak-Czochra. Characterization of stem cells using mathematical models of multistage cell lineages. Mathematical and Computer Modelling, 53 (7), (2011), 1505-1517. · Zbl 1219.34068
[277] T. Stiehl, A. Marciniak-Czochra. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Mathematical Modelling of Natural Phenomena, 7 (01) (2012), 166-202. · Zbl 1241.92045
[278] A. Świerniak, J. Klamka. Local Controllability of Models of Combined Anticancer Therapy with Delays in Control. Math. Model. Nat. Phenom. (2014) Vol. 9, No. 4, 216-226. DOI: . · Zbl 1292.93037
[279] J. Swinburne, M.C. Mackey. Cyclical thrombocytopenia: Characterization by spectral analysis and a review. J. Theor. Med. (2000), 2, 81-91. · Zbl 0943.92023
[280] H. Talibi Alaoui, R. Yafia. Stability and Hopf bifurcation in an approachable haematopoietic stem cells model. Math Biosci. (2007) 206(2), 176-84. · Zbl 1114.92021
[281] T. Tian, K. Smith-Miles. Mathematical modeling of GATA-switching for regulating the differentiation of hematopoietic stem cell. BMC Systems Biology (2014), 8(Suppl 1):S8 .
[282] J. E. Till, E. A. McCulloch, L. Siminovitch. A Stochastic Model of Stem Cell Proliferation, Based on the Growth of Spleen Colony-Forming Cells. Proceedings of the National Academy of Sciences of the United States of America, (1964), 15, Vol. 51, No. 1, 29-36. · Zbl 1355.92026
[283] A. D. Tsodikov, D. Hasenclever, M. Loeffler. Regression with bounted outcome score: Evaluation of power by bootstrap and simulation in a chronic myelogenous leukemia clinical trial, Statistics in Medicine 17 (1998), 1909-1922.
[284] V. Vainstein, Y. Ginosar, M. Shoham, A. Ianovski A. Rabinovich, Y. Kogan, V. Selitser, Z. Agur. Improving Cancer Therapy by Doxorubicin and Granulocyte Colony-Stimulating Factor: Insights from a Computerized Model of Human Granulopoiesis. Math. Model. Nat. Phenom. (2006), Vol. 1, No. 2, 70-80. · Zbl 1337.92120
[285] H. von Foerster. (1959), Some remarks on changing populations. F. Stohlman, ed., The kinetics of cell proliferation, Grune and Stratton, New York, 1959), 382-407.
[286] G. F. Webb. Theory of nonlinear age-dependent population dynamics, volume 89 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1985.
[287] G. F. Webb. An operator-theoretic formulation of asynchronous exponential growth. Trans. Amer. Math. Soc., (1987) 303(2) 751-763. · Zbl 0654.47021
[288] G. F. Webb. Semigroup methods in populations dynamics: Proliferating cell populations, Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics Series, Vol. 116, Marcel Dekker, New York, 1989, 441-449.
[289] G. F. Webb. Asynchronous exponential growth in differential equations with homogeneous nonlinearities, Differential Equations in Banach Spaces, Lecture Notes in Pure and Applied Mathematics Series, Vol. 148, Marcel Dekker, New York, (1993), 225-233. · Zbl 0827.47035
[290] G. F. Webb. Asynchronous exponential growth in differential equations with asymptotically homogeneous nonlinearities, Adv. Math. Sci. Appl., Vol. 3 (1994), 43-55. · Zbl 0829.92017
[291] G. F. Webb. Periodic and chaotic behavior in structured models of cell population dynamics, Recent Developments in Evolution Equations, Pitman Res. Notes Math. Series. 324 (1995), 40-49. · Zbl 0822.92016
[292] G. F. Webb. Structured population dynamics, Banach Center Publications, Polish Academy of Sciences Institute of Mathematics, Mathematical Modelling of Population Dynamics, Vol. 63 (2004), 123-163. · Zbl 1051.92036
[293] G. F. Webb. Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, Vol. 1936, Springer-Verlag, Berlin-New York (2008), 1-49.
[294] Z. L. Whichard, C. A. Sarkar, M. Kimmel, S. J. Corey. Hematopoiesis and its disorders: a systems biology approach. Blood (2010) 115: 2339-2347 doi:.
[295] H. E. Wichmann, M. Loeffler, Probability of self-renewal: Assumptions and limitations. A commentary. Blood Cells, 9, (1983), 475-483.
[296] H. E. Wichmann, M. Loeffler, U. Reincke, The kinetics of granulopoiesis in long term mouse bone marrow culture. Part II. Int.J.Cell Cloning, 2 (1984), 408-424.
[297] H. E. Wichmann, M. Loeffler, S. Schmitz, A concept of hemopoietic regulation and its biomathematical realisation. Blood Cells, 14 (1988), 411-429.
[298] H. E. Wichmann, M. Loeffler, K. Pantel, H. Wulff, A mathematical model of erythropoiesis in mice and rats. Part 2. Stimulated erythropoiesis. Cell Tissue Kinet., 22, (1989), 31-49.
[299] O. Wolkenhauer, C. Auffray, O. Brass, J. Clairambault, A. Deutsch, D. Drasdo, F. Gervasio, L. Preziosi, P. Maini, A. Marciniak-Czochra, C. Kossow, L. Kuepfer, K. Rateitschak, I. Ramis-Conde, B. Ribba, A. Schuppert, R.Smallwood, G. Stamatakos, F. Winter, H. Byrne. Enabling multiscale modeling in systems medicine. Genome Med (2014) 6, 3 pages.
[300] H. Wulff, H. E. Wichmann, M. Loeffler, K. Pantel, A mathematical model of erythropoiesis in mice and rats. Part 3. Suppressed erythropoiesis. Cell Tissue Kinet., 22 (1989), 51-61.
[301] C. Zhuge, J. Lei, M.C. Mackey. Neutrophil dynamics in response to chemotherapy and G-CSF. J. Theor. Biol. (2012) 293, 111-120. · Zbl 1307.92147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.