×

Improved bridge constructs for stochastic differential equations. (English) Zbl 1384.65011

Summary: We consider the task of generating discrete-time realisations of a nonlinear multivariate diffusion process satisfying an Itô stochastic differential equation conditional on an observation taken at a fixed future time-point. Such realisations are typically termed diffusion bridges. Since, in general, no closed form expression exists for the transition densities of the process of interest, a widely adopted solution works with the Euler-Maruyama approximation, by replacing the intractable transition densities with Gaussian approximations. However, the density of the conditioned discrete-time process remains intractable, necessitating the use of computationally intensive methods such as Markov chain Monte Carlo. Designing an efficient proposal mechanism which can be applied to a noisy and partially observed system that exhibits nonlinear dynamics is a challenging problem, and is the focus of this paper. By partitioning the process into two parts, one that accounts for nonlinear dynamics in a deterministic way, and another as a residual stochastic process, we develop a class of novel constructs that bridge the residual process via a linear approximation. In addition, we adapt a recently proposed construct to a partial and noisy observation regime. We compare the performance of each new construct with a number of existing approaches, using three applications.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
62M05 Markov processes: estimation; hidden Markov models
60J60 Diffusion processes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aït-Sahalia, Y.: Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1), 223-262 (2002) · Zbl 1104.62323 · doi:10.1111/1468-0262.00274
[2] Aït-Sahalia, Y.: Closed-form likelihood expansions for multivariate diffusions. Annal. Stat. 36(2), 906-937 (2008) · Zbl 1246.62180 · doi:10.1214/009053607000000622
[3] Beskos, A., Papaspiliopoulos, O., Roberts, G.O., Fearnhead, P.: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Stat. Soc. 68, 333-382 (2006) · Zbl 1100.62079 · doi:10.1111/j.1467-9868.2006.00552.x
[4] Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. Ann. Stat. 37, 223-245 (2009) · Zbl 1169.65004 · doi:10.1214/07-AOS550
[5] Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.L.: Bayesian inference for a discretely observed stochastic kinetic model. Stat. Comput. 18(2), 125-135 (2008) · doi:10.1007/s11222-007-9043-x
[6] Clark, J.: The simulation of pinned diffusions. In: Decision and control, 1990, IEEE, Proceedings of the 29th IEEE Conference on, pp. 1418-1420 (1990)
[7] Del Moral, P., Murray, L.M.: Sequential Monte Carlo with highly informative observations. SIAM/ASA J. Uncertain. Quant. 3(1), 969-997 (2015) · Zbl 1327.65004 · doi:10.1137/15M1011214
[8] Delyon, B., Hu, Y.: Simulation of conditioned diffusion and application to parameter estimation. Stochastic Process. Appl. 116, 1660-1675 (2006) · Zbl 1107.60046 · doi:10.1016/j.spa.2006.04.004
[9] Durham, G.B., Gallant, A.R.: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 20, 297-338 (2002) · doi:10.1198/073500102288618397
[10] Elerian, O., Chib, S., Shephard, N.: Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69, 959-993 (2001) · Zbl 1017.62068 · doi:10.1111/1468-0262.00226
[11] Eraker, B.: MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Stat. 19(2), 177-191 (2001) · doi:10.1198/073500101316970403
[12] Fearnhead, P.: Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Statist. Comput. 18, 151-171 (2008) · doi:10.1007/s11222-007-9045-8
[13] Fearnhead, P., Giagos, V., Sherlock, C.: Inference for reaction networks using the linear noise approximation. Biometrics 70(2), 457-466 (2014) · Zbl 1419.62346 · doi:10.1111/biom.12152
[14] Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55, 468-519 (1952) · Zbl 0047.09303 · doi:10.2307/1969644
[15] Fuchs, C.: Inference for Diffusion Processes with Applications in Life Sciences. Springer, Heidelberg (2013) · Zbl 1276.62051 · doi:10.1007/978-3-642-25969-2
[16] Golightly, A., Wilkinson, D.J.: Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Stat. Data Anal. 52(3), 1674-1693 (2008) · Zbl 1452.62603 · doi:10.1016/j.csda.2007.05.019
[17] Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus. 1(6), 807-820 (2011) · doi:10.1098/rsfs.2011.0047
[18] Golightly, A., Henderson, D.A., Sherlock, C.: Delayed acceptance particle MCMC for exact inference in stochastic kinetic models. Stat. Comput. 25(5), 1039-1055 (2015) · Zbl 1332.60117 · doi:10.1007/s11222-014-9469-x
[19] Heydari, J.J., Lawless, C., Lydall, D.A., Wilkinson, D.J.: Fast bayesian parameter estimation for stochastic logistic growth models. Biosystems 122, 55-72 (2014) · doi:10.1016/j.biosystems.2014.05.002
[20] Kalogeropoulos, K., Roberts, G.O., Dellaportas, P.: Inference for stochastic volatility models using time change transformations. Ann. Stat. 38(2), 784-807 (2010) · Zbl 1189.91220 · doi:10.1214/09-AOS702
[21] Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Probab. 7(1), 49-58 (1970) · Zbl 0191.47301 · doi:10.1017/S0021900200026929
[22] Lin, M., Chen, R., Mykland, P.: On generating Monte Carlo samples of continuous diffusion bridges. J. Am. Stat. Assoc. 105, 820-838 (2010) · Zbl 1392.60068 · doi:10.1198/jasa.2010.tm09057
[23] Lindström, E.: A regularized bridge sampler for sparsely sampled diffusions. Stat. Comput. 22(1), 615-623 (2012) · Zbl 1322.62211 · doi:10.1007/s11222-011-9255-y
[24] Lu, Z.H., Chow, S.M., Sherwood, A., Zhu, H.: Bayesian analysis of ambulatory blood pressure dynamics with application to irregularly spaced sparse data. Ann. Appl. Stat. 9(3), 1601-1620 (2015) · Zbl 1454.62358 · doi:10.1214/15-AOAS846
[25] Marchand, J.L.: Conditioning diffusions with respect to partial observations. arXiv preprint arXiv 1105, 1608 (2011)
[26] Matis, T.I., Parajulee, M.N., Matis, J.H., Shrestha, R.B.: A mechanistic model based analysis of cotton aphid population dynamics data. Agric. For. Entomol. 10(4), 355-362 (2008) · doi:10.1111/j.1461-9563.2008.00389.x
[27] Øksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, New York (2003) · Zbl 1025.60026 · doi:10.1007/978-3-642-14394-6
[28] Papaspiliopoulos, O., Roberts, G.O.: Importance sampling techniques for estimation of diffusion models. Statistical Methods for Stochastic Differential Equations, Monographs on Statistics and Applied Probability, pp. 311-337. Chapman and Hall, (2012) · Zbl 1272.65012
[29] Papaspiliopoulos, O., Roberts, G.O., Stramer, O.: Data augmentation for diffusions. J. Comput. Graph. Stat. 22, 665-688 (2013) · doi:10.1080/10618600.2013.783484
[30] Pedersen, A.R.: A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Stat. 22(1), 55-71 (1995) · Zbl 0827.62087
[31] Picchini, U.: Inference for SDE models via approximate bayesian computation. J. Comput. Graph. Stat. 23(4), 1080-1100 (2014) · doi:10.1080/10618600.2013.866048
[32] Roberts, G.O., Stramer, O.: On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm. Biometrika 88(3), 603-621 (2001) · Zbl 0985.62066 · doi:10.1093/biomet/88.3.603
[33] Rogers, G.L.C., Williams, D.: Diffusions, Markov Processes and Martingales, vol. 1, 2nd edn. Cambridge University Press, Cambridge (2000) · Zbl 0977.60005 · doi:10.1017/CBO9781107590120
[34] Schauer, M., van der Meulen, F., van Zanten, H.: Guided Proposals for Simulating Multi-dimensional Diffusion Bridges. Bernoulli In Press, Orlando (2016) · Zbl 1415.65022
[35] Shoji, I.: A note on convergence rate of a linearization method for the discretization of stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2667-2671 (2011) · Zbl 1221.65020 · doi:10.1016/j.cnsns.2010.09.008
[36] Shoji, I., Ozaki, T.: A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika 85(1), 240-243 (1998) · Zbl 0904.62098 · doi:10.1093/biomet/85.1.240
[37] Stramer, O., Yan, J.: On simulated likelihood of discretely observed diffusion processes and comparison to closed-form approximation. University of Iowa, Technical Report (2006)
[38] Stramer, O., Bognar, M., Scheider, P.: Bayesian inference for discretely sampled markov processes with closed-form likelihood expansions. J. Financ. Econ. 8, 450-480 (2010)
[39] van der Meulen, F., Schauer, M.: Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals, available from http://arxiv.org/abs/1406.4704 (2015) · Zbl 1378.62050
[40] van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North Holland Publishing Co., Redwood (2001) · Zbl 0974.60020
[41] Whitaker, G.A., Golightly, A., Boys, R.J., Sherlock, C.: (2015) Bayesian inference for diffusion driven mixed-effects models, available from http://arxiv.org/abs/1507.06807 · Zbl 1384.62109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.