zbMATH — the first resource for mathematics

Classification of timelike constant slope surfaces in 3-dimensional Minkowski space. (English) Zbl 1384.53017
Summary: A surface in the Minkowski 3-space is called a constant slope surface if its position vector makes a constant angle with the normal at each point on the surface. In this paper, we give a complete classification of timelike constant slope surfaces in the three dimensional Minkowski space.
Reviewer: Reviewer (Berlin)

53B25 Local submanifolds
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53C40 Global submanifolds
53A35 Non-Euclidean differential geometry
Full Text: DOI
[1] Cermelli P., Di Scala A.J.: Constant-angle surfaces in liquid crystals. Philos. Mag. 87, 1871–1888 (2007) · doi:10.1080/14786430601110364
[2] Chen B.Y.: Geometry of Submanifolds. Dekker, New York (1973) · Zbl 0262.53036
[3] Dillen F., Fastenakels J., Van der Veken L., Vrancken L.: Constant angle surfaces in $${\(\backslash\)mathbb{S}\^2\(\backslash\)times\(\backslash\)mathbb{R}}$$ . Monatsh. Math. 152(2), 89–96 (2007) · Zbl 1140.53006 · doi:10.1007/s00605-007-0461-9
[4] Dillen F., Munteanu M.I.: Constant angle surfaces in $${\(\backslash\)mathbb{H}\^2\(\backslash\)times\(\backslash\)mathbb{R}}$$ . Bull. Braz. Math. Soc. 40(1), 1–13 (2009) · Zbl 1173.53012 · doi:10.1007/s00574-009-0004-1
[5] Fastenakels J., Munteanu M.I., Van der Veken J.: Constant angle surfaces in the Heisenberg group. Acta Math. Sin. (Engl. Ser.) 27(4), 747–756 (2011) · Zbl 1218.53019 · doi:10.1007/s10114-011-8428-0
[6] Fu Y., Yang D.: On constant slope spacelike surfaces in 3-dimensional Minkowski space. J. Math. Anal. Appl. 385(1), 208–220 (2012) · Zbl 1226.53012 · doi:10.1016/j.jmaa.2011.06.040
[7] Hano J., Nomizu K.: Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space. Tohoku Math. J. (2) 32(3), 427–437 (1984) · Zbl 0535.53002 · doi:10.2748/tmj/1178228808
[8] López R., Munteanu M.I.: Constant angle surfaces in Minkowski space. Bull. Belg. Math. Soc. Simon Stevin. 18(2), 271–286 (2011) · Zbl 1220.53024
[9] Munteanu M.I.: From golden spirals to constant slope surfaces. J. Math. Phys. 51, 073507 (2010) · Zbl 1311.14037 · doi:10.1063/1.3459064
[10] Munteanu M.I., Nistor A.I.: A new approach on constant angle surfaces in $${\(\backslash\)mathbb{E}\^3}$$ . Turkish J. Math. 33(1), 1–10 (2009)
[11] O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.