zbMATH — the first resource for mathematics

On two classes of digroups. (English) Zbl 1384.20059
Summary: The paper is devoted to studying two classes of digroups. We give new examples of digroups of such classes and construct an abelian digroup for which any mapping of its generating set to an arbitrary abelian digroup with one bar-unit can be uniquely extended to a homomorphism of these digroups. We also describe a congruence on a free dimonoid for which the quotient is an abelian digroup construction mentioned above.

20N99 Other generalizations of groups
17A32 Leibniz algebras
Full Text: DOI
[1] Loday, J.-L.: Dialgebras, Dialgebras and related operads: Lect. Notes Math., vol. 1763, pp. 7-66. Springer, Berlin (2001) · Zbl 0999.17002
[2] Zhuchok, AV, Free commutative dimonoids, Algebra Discrete Math., 9, 109-119, (2010) · Zbl 1224.08002
[3] Zhuchok, AV, Free \(n\)-nilpotent dimonoids, Algebra Discrete Math., 16, 299-310, (2013) · Zbl 1308.08004
[4] Zhuchok, A.V., Zhuchok, Yul.V.: Free left \(n\)-dinilpotent dimonoids. Semigroup Forum (2015). doi:10.1007/s00233-015-9743-z · Zbl 1384.08002
[5] Zhuchok, YV, Representations of ordered dimonoids by binary relations, Asian Eur. J. Math., 07, 1450006-1-1450006-13, (2014) · Zbl 1304.06014
[6] Kinyon, MK, Leibniz algebras, Lie racks, and digroups, J. Lie Theory, 17, 99-114, (2007) · Zbl 1129.17002
[7] Felipe, R.: Generalized Loday algebras and digroups (2004). Comunicaciones del CIMAT, No. I-04-01/21-01-2004 · Zbl 1304.06014
[8] Liu, K.: Transformation digroups, Preprint available at arXiv:math.GR/0409265 (2004) · Zbl 1336.08001
[9] Liu, K, The generalizations of groups, Res. Monogr. Math. Publ. Burnaby, 1, 153, (2004)
[10] Phillips, JD, A short basis for the variety of digroups, Semigroup Forum, 70, 466-470, (2005) · Zbl 1095.20052
[11] Zhuchok, Yu.V.: Endomorphisms of free abelian monogenic digroups. Mat. Stud. 43(2), 144-152 (2015) · Zbl 1336.08002
[12] Zhuchok, AV, Dimonoids and bar-units, Siberian Math. J., 56, 827-840, (2015) · Zbl 1336.08001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.