zbMATH — the first resource for mathematics

Heterotic instanton superpotentials from complete intersection Calabi-Yau manifolds. (English) Zbl 1383.83158
Summary: We study Pfaffians that appear in non-perturbative superpotential terms arising from worldsheet instantons in heterotic theories. A result by C. Beasley and E. Witten [“On the origin of gravity and the laws of Newton”, Preprint, arXiv:hep-th/0304115] shows that these instanton contributions cancel among curves within a given homology class for Calabi-Yau manifolds that can be described as hypersurfaces or complete intersections in projective or toric ambient spaces. We provide a prescription that identifies all \({ \mathbb{P}}^1\) curves in certain homology classes of complete intersection Calabi-Yau manifolds in products of projective spaces (CICYs) and cross-check our results by a comparison with the genus zero Gromov-Witten invariants. We then use this construction to study instanton superpotentials on those manifolds and their quotients. We identify a non-toric quotient of a non-favorable CICY with a single genus zero curve in a certain homology class, so that a cancellation a la Beasley-Witten is not possible. In another example, we study a non-toric quotient of a favorable CICY and check that the superpotential still vanishes. From this and related examples, we conjecture that the Beasley-Witten cancellation result can be extended to toric and non-toric quotients of CICYs, but can be avoided if the CICY is non-favorable.

83E30 String and superstring theories in gravitational theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32Q25 Calabi-Yau theory (complex-analytic aspects)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
CICY Quotients
Full Text: DOI
[1] Lukas, A.; Ovrut, BA; Waldram, D., On the four-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys., B 532, 43, (1998) · Zbl 1047.81551
[2] Lukas, A.; Ovrut, BA; Stelle, KS; Waldram, D., The universe as a domain wall, Phys. Rev., D 59, (1999)
[3] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., The exact MSSM spectrum from string theory, JHEP, 05, 043, (2006)
[4] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev., D 84, 106005, (2011)
[5] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, JHEP, 06, 113, (2012)
[6] Blaszczyk, M.; Groot Nibbelink, S.; Loukas, O.; Ruehle, F., Calabi-Yau compactifications of non-supersymmetric heterotic string theory, JHEP, 10, 166, (2015) · Zbl 1338.81337
[7] S. Groot Nibbelink, O. Loukas and F. Ruehle, (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories, Fortsch. Phys.63 (2015) 609 [arXiv:1507.07559] [INSPIRE]. · Zbl 1338.81337
[8] Anderson, LB; Constantin, A.; Lee, S-J; Lukas, A., Hypercharge flux in heterotic compactifications, Phys. Rev., D 91, (2015)
[9] Candelas, P.; Dale, AM; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys., B 298, 493, (1988)
[10] Braun, V., On free quotients of complete intersection Calabi-Yau manifolds, JHEP, 04, 005, (2011) · Zbl 1250.14026
[11] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., Stabilizing the complex structure in heterotic Calabi-Yau vacua, JHEP, 02, 088, (2011) · Zbl 1294.81153
[12] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., Stability walls in heterotic theories, JHEP, 09, 026, (2009)
[13] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., Stabilizing all geometric moduli in heterotic Calabi-Yau vacua, Phys. Rev., D 83, 106011, (2011) · Zbl 1294.81153
[14] Beasley, C.; Witten, E., Residues and world sheet instantons, JHEP, 10, 065, (2003)
[15] Dine, M.; Seiberg, N.; Wen, XG; Witten, E., Nonperturbative effects on the string world sheet, Nucl. Phys., B 278, 769, (1986)
[16] M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet. 2., Nucl. Phys.B 289 (1987) 319 [INSPIRE].
[17] Becker, K.; Becker, M.; Strominger, A., Five-branes, membranes and nonperturbative string theory, Nucl. Phys., B 456, 130, (1995) · Zbl 0925.81161
[18] Witten, E., World sheet corrections via D instantons, JHEP, 02, 030, (2000) · Zbl 0959.81034
[19] J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE].
[20] Lima, E.; Ovrut, BA; Park, J.; Reinbacher, R., Nonperturbative superpotential from membrane instantons in heterotic M-theory, Nucl. Phys., B 614, 117, (2001) · Zbl 0972.81153
[21] Buchbinder, EI; Donagi, R.; Ovrut, BA, Superpotentials for vector bundle moduli, Nucl. Phys., B 653, 400, (2003) · Zbl 1010.81078
[22] Buchbinder, EI; Donagi, R.; Ovrut, BA, Vector bundle moduli superpotentials in heterotic superstrings and M-theory, JHEP, 07, 066, (2002)
[23] Buchbinder, EI; Ovrut, BA, Non-vanishing superpotentials in heterotic string theory and discrete torsion, JHEP, 01, 038, (2017) · Zbl 1373.14037
[24] Distler, J., Resurrecting (2, 0) compactifications, Phys. Lett., B 188, 431, (1987)
[25] Distler, J.; Greene, BR, Aspects of (2, 0) string compactifications, Nucl. Phys., B 304, 1, (1988)
[26] Silverstein, E.; Witten, E., Criteria for conformal invariance of (0, 2) models, Nucl. Phys., B 444, 161, (1995) · Zbl 0990.81666
[27] Basu, A.; Sethi, S., World sheet stability of (0, 2) linear σ-models, Phys. Rev., D 68, (2003)
[28] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[29] Aspinwall, PS; Morrison, DR, Chiral rings do not suffice: N = (2, 2) theories with nonzero fundamental group, Phys. Lett., B 334, 79, (1994)
[30] Braun, V.; Kreuzer, M.; Ovrut, BA; Scheidegger, E., Worldsheet instantons, torsion curves and non-perturbative superpotentials, Phys. Lett., B 649, 334, (2007) · Zbl 1248.81156
[31] Candelas, P.; Ossa, XC; Green, PS; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys., B 359, 21, (1991) · Zbl 1098.32506
[32] Hosono, S.; Klemm, A.; Theisen, S.; Yau, S-T, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys., 167, 301, (1995) · Zbl 0814.53056
[33] Constantin, A.; Gray, J.; Lukas, A., Hodge numbers for all CICY quotients, JHEP, 01, 001, (2017) · Zbl 1373.14038
[34] Groot Nibbelink, S.; Vaudrevange, PKS, Schoen manifold with line bundles as resolved magnetized orbifolds, JHEP, 03, 142, (2013) · Zbl 1342.81462
[35] Blaszczyk, M.; Groot Nibbelink, S.; Ruehle, F., Gauged linear σ-models for toroidal orbifold resolutions, JHEP, 05, 053, (2012) · Zbl 1348.81294
[36] Groot Nibbelin, S.; Ruehle, F., Line bundle embeddings for heterotic theories, JHEP, 04, 186, (2016) · Zbl 1388.81591
[37] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and A new heterotic standard model, JHEP, 02, 054, (2010) · Zbl 1270.81146
[38] He, Y-H; Lee, S-J; Lukas, A., Heterotic models from vector bundles on toric Calabi-Yau manifolds, JHEP, 05, 071, (2010) · Zbl 1287.81094
[39] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[40] Gray, J.; He, Y-H; Ilderton, A.; Lukas, A., A new method for finding vacua in string phenomenology, JHEP, 07, 023, (2007)
[41] Anderson, LB; He, Y-H; Lukas, A., Heterotic compactification, an algorithmic approach, JHEP, 07, 049, (2007)
[42] Witten, E., Nonperturbative superpotentials in string theory, Nucl. Phys., B 474, 343, (1996) · Zbl 0925.32012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.