×

zbMATH — the first resource for mathematics

Holographic constraints on Bjorken hydrodynamics at finite coupling. (English) Zbl 1383.81204
Summary: In large-\(N_c\) conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quantifiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavy-ion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81V05 Strong interaction, including quantum chromodynamics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dubovsky, S.; Hui, L.; Nicolis, A.; Son, DT, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev., D 85, (2012)
[2] Endlich, S.; Nicolis, A.; Porto, RA; Wang, J., Dissipation in the effective field theory for hydrodynamics: first order effects, Phys. Rev., D 88, 105001, (2013)
[3] Grozdanov, S.; Polonyi, J., Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev., D 91, 105031, (2015)
[4] Nicolis, A.; Penco, R.; Rosen, RA, Relativistic fluids, superfluids, solids and supersolids from a coset construction, Phys. Rev., D 89, (2014)
[5] Kovtun, P.; Moore, GD; Romatschke, P., Towards an effective action for relativistic dissipative hydrodynamics, JHEP, 07, 123, (2014)
[6] Harder, M.; Kovtun, P.; Ritz, A., On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP, 07, 025, (2015)
[7] Grozdanov, S.; Polonyi, J., Dynamics of the electric current in an ideal electron gas: A sound mode inside the quasiparticles, Phys. Rev., D 92, (2015)
[8] Crossley, M.; Glorioso, P.; Liu, H., Effective field theory of dissipative fluids, JHEP, 09, 095, (2017)
[9] Glorioso, P.; Crossley, M.; Liu, H., Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP, 09, 096, (2017)
[10] Haehl, FM; Loganayagam, R.; Rangamani, M., The fluid manifesto: emergent symmetries, hydrodynamics and black holes, JHEP, 01, 184, (2016) · Zbl 1388.83350
[11] Haehl, FM; Loganayagam, R.; Rangamani, M., Topological σ-models & dissipative hydrodynamics, JHEP, 04, 039, (2016) · Zbl 1388.83351
[12] Montenegro, D.; Torrieri, G., Lagrangian formulation of relativistic Israel-stewart hydrodynamics, Phys. Rev., D 94, (2016)
[13] P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
[14] P. Gao and H. Liu, Emergent Supersymmetry in Local Equilibrium Systems, arXiv:1701.07445 [INSPIRE]. · Zbl 1384.81134
[15] K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, arXiv:1701.07436 [INSPIRE].
[16] J. Ferziger and H. Kaper, Mathematical theory of transport processes in gases, North-Holland Publishing Company, Amsterdam, Netherlands (1972).
[17] V. Silin, Introduction to Kinetic Theory of Gases (in Russian), 3 edition, Nauka, Moscow, U.S.S.R. (1971).
[18] I.A. Kvasnikov, Thermodynamics and statistical physics: A theory of non-equilibrium systems (in Russian), Moscow University Press, Moscow, U.S.S.R. (1987).
[19] S. Chapman and T. Cowling, The mathematical theory of non-uniform gases, 3 edition, Cambridge University Press, Cambridge, U.K. (1970).
[20] L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, Springer-Verlag, Berlin, FRG (2009). · Zbl 1171.82002
[21] P.L. Bhatnagar, E.P. Gross and M. Krook, A Model for Collision Processes in Gases. 1. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev.94 (1954) 511 [INSPIRE]. · Zbl 0055.23609
[22] S. de Groot, W. van Leeuwen and C. van Weert, Relativistic Kinetic Theory, North-Holland Publishing Company, Amsterdam, Netherlands (1980). · Zbl 0177.28601
[23] P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP01 (2003) 030 [hep-ph/0209353] [INSPIRE]. · Zbl 1226.81288
[24] P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP05 (2003) 051 [hep-ph/0302165] [INSPIRE].
[25] Policastro, G.; Son, DT; Starinets, AO, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 87, (2001)
[26] Policastro, G.; Son, DT; Starinets, AO, From AdS/CFT correspondence to hydrodynamics, JHEP, 09, 043, (2002)
[27] Kovtun, P.; Son, DT; Starinets, AO, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601, (2005)
[28] Son, DT; Starinets, AO, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci., 57, 95, (2007)
[29] Romatschke, P., Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions, Eur. Phys. J., C 76, 352, (2016)
[30] W. Florkowski, M.P. Heller and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, arXiv:1707.02282 [INSPIRE].
[31] Grozdanov, S.; Kaplis, N.; Starinets, AO, From strong to weak coupling in holographic models of thermalization, JHEP, 07, 151, (2016) · Zbl 1390.83113
[32] Grozdanov, S.; Schee, W., Coupling constant corrections in a holographic model of heavy ion collisions, Phys. Rev. Lett., 119, (2017)
[33] Andrade, T.; Casalderrey-Solana, J.; Ficnar, A., Holographic isotropisation in Gauss-Bonnet gravity, JHEP, 02, 016, (2017) · Zbl 1377.83070
[34] Grozdanov, S.; Starinets, AO, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP, 03, 166, (2017) · Zbl 1377.81173
[35] Stricker, SA, Holographic thermalization in N = 4 super Yang-Mills theory at finite coupling, Eur. Phys. J., C 74, 2727, (2014)
[36] Waeber, S.; Schäfer, A.; Vuorinen, A.; Yaffe, LG, Finite coupling corrections to holographic predictions for hot QCD, JHEP, 11, 087, (2015)
[37] Green, MB; Stahn, C., D3-branes on the Coulomb branch and instantons, JHEP, 09, 052, (2003)
[38] Haro, S.; Sinkovics, A.; Skenderis, K., On alpha-prime corrections to D-brane solutions, Phys. Rev., D 68, (2003)
[39] Green, MB; Peeters, K.; Stahn, C., Superfield integrals in high dimensions, JHEP, 08, 093, (2005)
[40] Paulos, MF, Higher derivative terms including the Ramond-Ramond five-form, JHEP, 10, 047, (2008) · Zbl 1245.81215
[41] Myers, RC; Paulos, MF; Sinha, A., Quantum corrections to η/s, Phys. Rev., D 79, (2009)
[42] Grozdanov, S.; Starinets, AO, On the universal identity in second order hydrodynamics, JHEP, 03, 007, (2015) · Zbl 1317.83068
[43] Grozdanov, S.; Starinets, AO, Zero-viscosity limit in a holographic Gauss-Bonnet liquid, Theor. Math. Phys., 182, 61, (2015) · Zbl 1317.83068
[44] Kats, Y.; Petrov, P., Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP, 01, 044, (2009) · Zbl 1243.81159
[45] Buchel, A.; Myers, RC; Sinha, A., Beyond η/s = 1/4π, JHEP, 03, 084, (2009)
[46] Gross, DJ; Sloan, JH, The quartic effective action for the heterotic string, Nucl. Phys., B 291, 41, (1987)
[47] Brigante, M.; Liu, H.; Myers, RC; Shenker, S.; Yaida, S., Viscosity bound violation in higher derivative gravity, Phys. Rev., D 77, 126006, (2008)
[48] Brigante, M.; Liu, H.; Myers, RC; Shenker, S.; Yaida, S., The viscosity bound and causality violation, Phys. Rev. Lett., 100, 191601, (2008)
[49] Hofman, DM; Maldacena, J., Conformal collider physics: energy and charge correlations, JHEP, 05, 012, (2008)
[50] Buchel, A.; Myers, RC, Causality of holographic hydrodynamics, JHEP, 08, 016, (2009)
[51] Hofman, DM, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys., B 823, 174, (2009) · Zbl 1196.81266
[52] Buchel, A.; Escobedo, J.; Myers, RC; Paulos, MF; Sinha, A.; Smolkin, M., Holographic GB gravity in arbitrary dimensions, JHEP, 03, 111, (2010) · Zbl 1271.81120
[53] Camanho, XO; Edelstein, JD, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP, 04, 007, (2010) · Zbl 1272.83044
[54] Camanho, XO; Edelstein, JD; Maldacena, J.; Zhiboedov, A., Causality constraints on corrections to the graviton three-point coupling, JHEP, 02, 020, (2016)
[55] Reall, H.; Tanahashi, N.; Way, B., Causality and hyperbolicity of Lovelock theories, Class. Quant. Grav., 31, 205005, (2014) · Zbl 1304.83013
[56] Willison, S., Local well-posedness in Lovelock gravity, Class. Quant. Grav., 32, (2015) · Zbl 1307.83045
[57] Papallo, G.; Reall, HS, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP, 11, 109, (2015) · Zbl 1388.83494
[58] Willison, S., Quasilinear reformulation of Lovelock gravity, Int. J. Mod. Phys., D 24, 1542010, (2015) · Zbl 1336.83041
[59] Cheung, C.; Remmen, GN, Positivity of curvature-squared corrections in gravity, Phys. Rev. Lett., 118, (2017)
[60] Andrade, T.; Caceres, E.; Keeler, C., Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity, Class. Quant. Grav., 34, 135003, (2017) · Zbl 1367.83070
[61] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, arXiv:1610.09378 [INSPIRE]. · Zbl 1383.83024
[62] Konoplya, RA; Zhidenko, A., Eikonal instability of Gauss-Bonnet-(anti-)de Sitter black holes, Phys. Rev., D 95, 104005, (2017)
[63] Konoplya, RA; Zhidenko, A., The portrait of eikonal instability in Lovelock theories, JCAP, 05, 050, (2017)
[64] Konoplya, RA; Zhidenko, A., Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling, JHEP, 09, 139, (2017) · Zbl 1382.83088
[65] Kovtun, PK; Starinets, AO, Quasinormal modes and holography, Phys. Rev., D 72, (2005)
[66] D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon plasma signature, Phys. Rev. Lett.86 (2001) 4783 [nucl-th/0011058] [INSPIRE].
[67] Heinz, UW, Towards the little bang standard model, J. Phys. Conf. Ser., 455, (2013)
[68] M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at\( \sqrt{S_{NN}}=200 \)GeV, Phys. Rev.C 78 (2008) 034915 [Erratum ibid.C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].
[69] Luzum, M.; Romatschke, P., Viscous hydrodynamic predictions for nuclear collisions at the LHC, Phys. Rev. Lett., 103, 262302, (2009)
[70] Schenke, B.; Jeon, S.; Gale, C., Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics, Phys. Rev. Lett., 106, (2011)
[71] H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett.106 (2011) 192301 [Erratum ibid.109 (2012) 139904] [arXiv:1011.2783] [INSPIRE].
[72] Chesler, PM; Yaffe, LG, Holography and colliding gravitational shock waves in asymptotically ads_{5} spacetime, Phys. Rev. Lett., 106, (2011)
[73] Grumiller, D.; Romatschke, P., On the collision of two shock waves in ads_{5}, JHEP, 08, 027, (2008)
[74] Casalderrey-Solana, J.; Heller, MP; Mateos, D.; Schee, W., From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett., 111, 181601, (2013)
[75] Casalderrey-Solana, J.; Heller, MP; Mateos, D.; Schee, W., Longitudinal coherence in a holographic model of asymmetric collisions, Phys. Rev. Lett., 112, 221602, (2014)
[76] Chesler, PM; Yaffe, LG, Holography and off-center collisions of localized shock waves, JHEP, 10, 070, (2015)
[77] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge University Press, Cambridge, U.K. (2014). · Zbl 1325.81004
[78] Chesler, PM; Schee, W., Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys., E 24, 1530011, (2015) · Zbl 1338.81410
[79] Heller, MP, Holography, hydrodynamization and heavy-ion collisions, Acta Phys. Polon., B 47, 2581, (2016) · Zbl 1371.83085
[80] Atashi, M.; Bitaghsir Fadafan, K.; Jafari, G., Linearized holographic isotropization at finite coupling, Eur. Phys. J., C 77, 430, (2017)
[81] Bjorken, JD, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev., D 27, 140, (1983)
[82] Janik, RA; Peschanski, RB, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev., D 73, (2006)
[83] Nakamura, S.; Sin, S-J, A holographic dual of hydrodynamics, JHEP, 09, 020, (2006)
[84] Janik, RA, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett., 98, (2007)
[85] Heller, MP; Janik, RA, Viscous hydrodynamics relaxation time from AdS/CFT, Phys. Rev., D 76, (2007) · Zbl 1222.81269
[86] Heller, MP; Janik, RA; Peschanski, R., Hydrodynamic flow of the quark-gluon plasma and gauge/gravity correspondence, Acta Phys. Polon., B 39, 3183, (2008)
[87] Heller, MP; Janik, RA; Witaszczyk, P., The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett., 108, 201602, (2012)
[88] Booth, I.; Heller, MP; Spalinski, M., Black brane entropy and hydrodynamics: the boost-invariant case, Phys. Rev., D 80, 126013, (2009)
[89] Jankowski, J.; Plewa, G.; Spalinski, M., Statistics of thermalization in bjorken flow, JHEP, 12, 105, (2014)
[90] Pedraza, JF, Evolution of nonlocal observables in an expanding boost-invariant plasma, Phys. Rev., D 90, (2014)
[91] Bellantuono, L.; Colangelo, P.; Fazio, F.; Giannuzzi, F.; Nicotri, S., Role of nonlocal probes of thermalization for a strongly interacting non-abelian plasma, Phys. Rev., D 94, (2016)
[92] Ecker, C.; Grumiller, D.; Stanzer, P.; Stricker, SA; Schee, W., Exploring nonlocal observables in shock wave collisions, JHEP, 11, 054, (2016)
[93] S.F. Lokhande, G.W.J. Oling and J.F. Pedraza, Linear response of entanglement entropy from holography, arXiv:1705.10324 [INSPIRE]. · Zbl 1383.81244
[94] Grozdanov, S.; Kaplis, N., Constructing higher-order hydrodynamics: the third order, Phys. Rev., D 93, (2016)
[95] Heller, MP; Janik, RA; Witaszczyk, P., Hydrodynamic gradient expansion in gauge theory plasmas, Phys. Rev. Lett., 110, 211602, (2013)
[96] Benincasa, P.; Buchel, A.; Heller, MP; Janik, RA, On the supergravity description of boost invariant conformal plasma at strong coupling, Phys. Rev., D 77, (2008)
[97] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys., A 45, 473001, (2012) · Zbl 1348.83039
[98] Baier, R.; Romatschke, P.; Son, DT; Starinets, AO; Stephanov, MA, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP, 04, 100, (2008) · Zbl 1246.81352
[99] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008)
[100] Buchel, A.; Liu, JT; Starinets, AO, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys., B 707, 56, (2005) · Zbl 1160.81463
[101] Benincasa, P.; Buchel, A., Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP, 01, 103, (2006)
[102] Buchel, A., Resolving disagreement for eta/s in a CFT plasma at finite coupling, Nucl. Phys., B 803, 166, (2008) · Zbl 1190.81115
[103] Buchel, A., Shear viscosity of boost invariant plasma at finite coupling, Nucl. Phys., B 802, 281, (2008) · Zbl 1190.82042
[104] Buchel, A.; Paulos, M., Relaxation time of a CFT plasma at finite coupling, Nucl. Phys., B 805, 59, (2008) · Zbl 1190.76173
[105] Buchel, A.; Paulos, M., Second order hydrodynamics of a CFT plasma from boost invariant expansion, Nucl. Phys., B 810, 40, (2009) · Zbl 1192.81296
[106] Saremi, O.; Sohrabi, KA, Causal three-point functions and nonlinear second-order hydrodynamic coefficients in AdS/CFT, JHEP, 11, 147, (2011) · Zbl 1306.81169
[107] Cherman, A.; Dorigoni, D.; Ünsal, M., Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles, JHEP, 10, 056, (2015) · Zbl 1388.81205
[108] Cherman, A.; Koroteev, P.; Ünsal, M., Resurgence and holomorphy: from weak to strong coupling, J. Math. Phys., 56, (2015) · Zbl 1319.81061
[109] Basar, G.; Dunne, GV, Hydrodynamics, resurgence and transasymptotics, Phys. Rev., D 92, 125011, (2015)
[110] Heller, MP; Spalinski, M., Hydrodynamics beyond the gradient expansion: resurgence and resummation, Phys. Rev. Lett., 115, (2015)
[111] Aniceto, I.; Spalinski, M., Resurgence in extended hydrodynamics, Phys. Rev., D 93, (2016)
[112] Buchel, A.; Heller, MP; Noronha, J., Entropy production, hydrodynamics and resurgence in the primordial quark-gluon plasma from holography, Phys. Rev., D 94, 106011, (2016)
[113] Kinoshita, S.; Mukohyama, S.; Nakamura, S.; Oda, K-y, A holographic dual of bjorken flow, Prog. Theor. Phys., 121, 121, (2009) · Zbl 1168.81022
[114] Heller, MP; Surowka, P.; Loganayagam, R.; Spalinski, M.; Vazquez, SE, Consistent holographic description of boost-invariant plasma, Phys. Rev. Lett., 102, (2009)
[115] D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP11 (2008) 070 [arXiv:0806.1334] [INSPIRE].
[116] Brihaye, Y.; Radu, E., Five-dimensional rotating black holes in Einstein-Gauss-Bonnet theory, Phys. Lett., B 661, 167, (2008) · Zbl 1246.83099
[117] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett., B 428, 105, (1998) · Zbl 1355.81126
[118] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, (1998) · Zbl 0914.53048
[119] Balasubramanian, V.; Ross, SF, Holographic particle detection, Phys. Rev., D 61, (2000)
[120] Louko, J.; Marolf, D.; Ross, SF, On geodesic propagators and black hole holography, Phys. Rev., D 62, (2000)
[121] Kundu, S.; Pedraza, JF, Spread of entanglement for small subsystems in holographic cfts, Phys. Rev., D 95, (2017)
[122] Peet, AW; Polchinski, J., UV/IR relations in AdS dynamics, Phys. Rev., D 59, (1999)
[123] Hatta, Y.; Iancu, E.; Mueller, AH; Triantafyllopoulos, DN, Aspects of the UV/IR correspondence: energy broadening and string fluctuations, JHEP, 02, 065, (2011) · Zbl 1294.81136
[124] Agón, CA; Guijosa, A.; Pedraza, JF, Radiation and a dynamical UV/IR connection in AdS/CFT, JHEP, 06, 043, (2014)
[125] Maldacena, JM, Wilson loops in large-N field theories, Phys. Rev. Lett., 80, 4859, (1998) · Zbl 0947.81128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.