×

zbMATH — the first resource for mathematics

On non-supersymmetric conformal manifolds: field theory and holography. (English) Zbl 1383.81180
Summary: We discuss the constraints that a conformal field theory should enjoy to admit exactly marginal deformations, i.e. to be part of a conformal manifold. In particular, using tools from conformal perturbation theory, we derive a sum rule from which one can extract restrictions on the spectrum of low spin operators and on the behavior of OPE coefficients involving nearly marginal operators. We then focus on conformal field theories admitting a gravity dual description, and as such a large-\(N\) expansion. We discuss the relation between conformal perturbation theory and loop expansion in the bulk, and show how such connection could help in the search for conformal manifolds beyond the planar limit. Our results do not rely on supersymmetry, and therefore apply also outside the realm of superconformal field theories.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
53Z05 Applications of differential geometry to physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Leigh, RG; Strassler, MJ, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys., B 447, 95, (1995) · Zbl 1009.81570
[2] Kol, B., On conformal deformations, JHEP, 09, 046, (2002)
[3] Benvenuti, S.; Hanany, A., Conformal manifolds for the conifold and other toric field theories, JHEP, 08, 024, (2005)
[4] Green, D.; Komargodski, Z.; Seiberg, N.; Tachikawa, Y.; Wecht, B., Exactly marginal deformations and global symmetries, JHEP, 06, 106, (2010) · Zbl 1288.81079
[5] B. Kol, On conformal deformations II, arXiv:1005.4408 [INSPIRE].
[6] El-Showk, S.; Papadodimas, K., Emergent spacetime and holographic cfts, JHEP, 10, 106, (2012)
[7] Cardy, JL, Continuously varying exponents and the value of the central charge, J. Phys., A 20, l891, (1987)
[8] Z. Komargodski and D. Simmons-Duffin, The random-bond Ising model in 2.01 and 3 dimensions, J. Phys.A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE]. · Zbl 1366.82009
[9] Behan, C.; Rastelli, L.; Rychkov, S.; Zan, B., Long-range critical exponents near the short-range crossover, Phys. Rev. Lett., 118, 241601, (2017) · Zbl 1376.82012
[10] Behan, C.; Rastelli, L.; Rychkov, S.; Zan, B., A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys., A 50, 354002, (2017) · Zbl 1376.82012
[11] Gillioz, M.; Lu, X.; Luty, MA, Scale anomalies, states and rates in conformal field theory, JHEP, 04, 171, (2017) · Zbl 1378.81117
[12] G. Arutyunov, S. Frolov and A. Petkou, Perturbative and instanton corrections to the OPE of CPOs in N = 4 SYM_{4}, Nucl. Phys.B 602 (2001) 238 [Erratum ibid.B 609 (2001) 540] [hep-th/0010137] [INSPIRE]. · Zbl 1097.81567
[13] Bianchi, M.; Kovacs, S.; Rossi, G.; Stanev, YS, Properties of the Konishi multiplet in N = 4 SYM theory, JHEP, 05, 042, (2001)
[14] Intriligator, KA; Skiba, W., Bonus symmetry and the operator product expansion of N = 4 super Yang-Mills, Nucl. Phys., B 559, 165, (1999) · Zbl 0957.81078
[15] Bashmakov, V.; Bertolini, M.; Raj, H., Broken current anomalous dimensions, conformal manifolds and renormalization group flows, Phys. Rev., D 95, (2017)
[16] Pappadopulo, D.; Rychkov, S.; Espin, J.; Rattazzi, R., OPE convergence in conformal field theory, Phys. Rev., D 86, 105043, (2012)
[17] Rychkov, S.; Yvernay, P., Remarks on the convergence properties of the conformal block expansion, Phys. Lett., B 753, 682, (2016) · Zbl 1367.81127
[18] Castedo Echeverri, A.; Harling, B.; Serone, M., The effective bootstrap, JHEP, 09, 097, (2016)
[19] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, JHEP, 10, 079, (2009)
[20] Tachikawa, Y., Five-dimensional supergravity dual of a-maximization, Nucl. Phys., B 733, 188, (2006) · Zbl 1192.83073
[21] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, (1998) · Zbl 0914.53048
[22] Cornalba, L.; Costa, MS; Penedones, J., Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP, 09, 037, (2007)
[23] Penedones, J., Writing CFT correlation functions as AdS scattering amplitudes, JHEP, 03, 025, (2011) · Zbl 1301.81154
[24] Fitzpatrick, AL; Kaplan, J., Analyticity and the holographic S-matrix, JHEP, 10, 127, (2012)
[25] Fitzpatrick, AL; Kaplan, J., Unitarity and the holographic S-matrix, JHEP, 10, 032, (2012)
[26] Aharony, O.; Alday, LF; Bissi, A.; Perlmutter, E., Loops in AdS from conformal field theory, JHEP, 07, 036, (2017) · Zbl 1380.81280
[27] S. Giombi, C. Sleight and M. Taronna, Spinning AdS loop diagrams: two point functions, arXiv:1708.08404 [INSPIRE]. · Zbl 1380.81362
[28] C. Cardona, Mellin-(Schwinger) representation of one-loop Witten diagrams in AdS, arXiv:1708.06339 [INSPIRE].
[29] Teber, S., Electromagnetic current correlations in reduced quantum electrodynamics, Phys. Rev., D 86, (2012)
[30] Herzog, CP; Huang, K-W, Boundary conformal field theory and a boundary central charge, JHEP, 10, 189, (2017) · Zbl 1383.81229
[31] Dymarsky, A.; Klebanov, IR; Roiban, R., Perturbative search for fixed lines in large-N gauge theories, JHEP, 08, 011, (2005)
[32] Dymarsky, A.; Klebanov, IR; Roiban, R., Perturbative gauge theory and closed string tachyons, JHEP, 11, 038, (2005)
[33] Pomoni, E.; Rastelli, L., Large-N field theory and AdS tachyons, JHEP, 04, 020, (2009)
[34] Adams, A.; Silverstein, E., Closed string tachyons, AdS/CFT and large-N QCD, Phys. Rev., D 64, (2001)
[35] H. Ooguri and C. Vafa, Non-supersymmetric AdS and the swampland, arXiv:1610.01533 [INSPIRE]. · Zbl 06854382
[36] Angelantonj, C.; Armoni, A., Nontachyonic type 0B orientifolds, nonsupersymmetric gauge theories and cosmological RG flow, Nucl. Phys., B 578, 239, (2000) · Zbl 0976.81065
[37] Liendo, P., Orientifold daughter of N = 4 SYM and double-trace running, Phys. Rev., D 86, 105032, (2012)
[38] Ö. Gürdogan and V. Kazakov, New integrable 4D quantum field theories from strongly deformed planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.117 (2016) 201602 [Addendum ibid.117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].
[39] Sieg, C.; Wilhelm, M., On a CFT limit of planar γ_{i}-deformed N = 4 SYM theory, Phys. Lett., B 756, 118, (2016)
[40] Mamroud, O.; Torrents, G., RG stability of integrable fishnet models, JHEP, 06, 012, (2017) · Zbl 1380.81346
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.