×

zbMATH — the first resource for mathematics

Isogeometric divergence-conforming \(B\)-splines for the steady Navier-Stokes equations. (English) Zbl 1383.76337

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/0719052 · Zbl 0482.65060
[2] DOI: 10.1016/j.compfluid.2005.07.012 · Zbl 1115.76040
[3] DOI: 10.1016/j.cma.2007.06.026 · Zbl 1173.76397
[4] DOI: 10.1016/j.cma.2008.11.020 · Zbl 1406.76023
[5] DOI: 10.1016/S0045-7930(98)00002-4 · Zbl 0964.76066
[6] DOI: 10.1090/S0025-5718-03-01579-5 · Zbl 1055.65118
[7] DOI: 10.1016/0045-7825(82)90071-8 · Zbl 0497.76041
[8] DOI: 10.1002/fld.2337 · Zbl 1429.76044
[9] DOI: 10.1137/100786708 · Zbl 1225.65100
[10] DOI: 10.1016/j.cma.2009.12.002 · Zbl 1227.78026
[11] DOI: 10.1090/S0025-5718-04-01718-1 · Zbl 1069.76029
[12] Cockburn B., SIAM J. Sci. Comput. 31 pp 61– · Zbl 1151.76527
[13] DOI: 10.1002/9780470749081 · Zbl 1378.65009
[14] DOI: 10.1007/978-1-4612-6333-3
[15] DOI: 10.1007/BFb0120591
[16] DOI: 10.1016/j.cma.2009.01.021 · Zbl 1227.65093
[17] DOI: 10.1007/s00211-012-0484-6 · Zbl 1259.65169
[18] Evans J. A., Math. Models Methods Appl. Sci. 22 pp 1250058–
[19] DOI: 10.1016/0021-9991(82)90058-4 · Zbl 0511.76031
[20] DOI: 10.1007/978-3-642-61623-5 · Zbl 0585.65077
[21] DOI: 10.1137/1.9780898717532 · Zbl 1020.65085
[22] P. Hood and C. Taylor, Finite Element Methods in Flow Problems, eds. J. T. Oden (University of Alabama in Huntsville Press, 1974) pp. 121–132.
[23] DOI: 10.1016/0045-7825(86)90025-3 · Zbl 0622.76077
[24] DOI: 10.1016/j.cma.2004.06.034 · Zbl 1091.76035
[25] DOI: 10.1017/S0305004100023999
[26] DOI: 10.1137/100818583 · Zbl 1391.76344
[27] DOI: 10.1016/j.jcp.2010.10.032 · Zbl 1391.76353
[28] DOI: 10.1007/BF02995904 · Zbl 0229.65079
[29] Pope S. B., Turbulent Flows (2003) · Zbl 1186.76286
[30] DOI: 10.1007/BFb0064470
[31] DOI: 10.1007/978-3-662-03206-0
[32] DOI: 10.1016/0021-9991(83)90129-8 · Zbl 0503.76040
[33] DOI: 10.1017/CBO9780511618994
[34] Spalding D. B., J. Appl. Mech. 28 pp 444–
[35] DOI: 10.1016/0045-7825(92)90060-W · Zbl 0745.76045
[36] Triebel H., Interpolation Theory, Function Spaces, Differential Operators (1995) · Zbl 0830.46028
[37] DOI: 10.1137/0715010 · Zbl 0384.65058
[38] DOI: 10.1016/0168-9274(91)90102-6 · Zbl 0708.76071
[39] Zhang S., Math. Comput. 250 pp 543–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.