zbMATH — the first resource for mathematics

Direct numerical simulations of supersonic turbulent channel flows of dense gases. (English) Zbl 1383.76293
Summary: The influence of dense-gas effects on compressible wall-bounded turbulence is investigated by means of direct numerical simulations of supersonic turbulent channel flows. Results are obtained for PP11, a heavy fluorocarbon representative of dense gases, the thermophysics properties of which are described by using a fifth-order virial equation of state and advanced models for the transport properties. In the dense-gas regime, the speed of sound varies non-monotonically in small perturbations and the dependency of the transport properties on the fluid density (in addition to the temperature) is no longer negligible. A parametric study is carried out by varying the bulk Mach and Reynolds numbers, and results are compared to those obtained for a perfect gas, namely air. Dense-gas flow exhibits almost negligible friction heating effects, since the high specific heat of the fluids leads to a loose coupling between thermal and kinetic fields, even at high Mach numbers. Despite negligible temperature variations across the channel, the mean viscosity tends to decrease from the channel walls to the centreline (liquid-like behaviour), due to its complex dependency on fluid density. On the other hand, strong density fluctuations are present, but due to the non-standard sound speed variation (opposite to the mean density evolution across the channel), the amplitude is maximal close to the channel wall, i.e. in the viscous sublayer instead of the buffer layer like in perfect gases. As a consequence, these fluctuations do not alter the turbulence structure significantly, and Morkovin’s hypothesis is well respected at any Mach number considered in the study. The preceding features make high Mach wall-bounded flows of dense gases similar to incompressible flows with variable properties, despite the significant fluctuations of density and speed of sound. Indeed, the semi-local scaling of A. Patel et al. [“Semi-local scaling and turbulence modulation in variable property turbulent channel flows”, Phys. Fluids 27, No. 9, Article No. 095101, 24 p. (2015; doi:10.1063/1.4929813)] or A. Trettel and J. Larsson [“Mean velocity scaling for compressible wall turbulence with heat transfer”, ibid. 28, No. 2, Article No. 026102, 18 p. (2016; doi:10.1063/1.4942022)] is shown to be well adapted to compare results from existing surveys and with the well-documented incompressible limit. Additionally, for a dense gas the isothermal channel flow is also almost adiabatic, and the Van Driest transformation also performs reasonably well. The present observations open the way to the development of suitable models for dense-gas turbulent flows.

76F65 Direct numerical and large eddy simulation of turbulence
76N15 Gas dynamics, general
76J20 Supersonic flows
Full Text: DOI
[1] Anderson, W. K., Numerical study on using sulfur hexafluoride as a wind tunnel test gas, AIAA J., 29, 12, 2179-2180, (1991)
[2] Aubard, G.; Gloerfelt, X.; Robinet, J.-C., Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction, AIAA J., 51, 10, 2395-2409, (2013)
[3] Bae, J. H.; Yoo, J. Y.; Choi, H., Direct numerical simulation of turbulent supercritical flows with heat transfer, Phys. Fluids, 17, 10, (2005) · Zbl 1188.76008
[4] Bogey, C.; Bailly, C., A family of low dispersive and low dissipative explicit schemes for flow and noise computations, J. Comput. Phys., 194, 1, 194-214, (2004) · Zbl 1042.76044
[5] Bogey, C.; Bailly, C., Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation, J. Fluid Mech., 627, 129-160, (2009) · Zbl 1171.76396
[6] Bogey, C.; De Cacqueray, N.; Bailly, C., A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations, J. Comput. Phys., 228, 5, 1447-1465, (2009) · Zbl 1263.76046
[7] Bogey, C.; Marsden, O.; Bailly, C., Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105, J. Fluid Mech., 701, 352-385, (2012) · Zbl 1248.76125
[8] Bradshaw, P., Compressible turbulent shear layers, Annu. Rev. Fluid Mech., 9, 1, 33-52, (1977) · Zbl 0412.76049
[9] Brown, B. P.; Argrow, B. M., Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines, J. Propul. Power, 16, 6, 1118-1124, (2000)
[10] Brun, C.; Boiarciuc, M. P.; Hakerborn, M.; Comte, P., Large eddy simulation of compressible channel flow – arguments in favour of universality of compressible turbulent wall bounded flows, Theor. Comput. Fluid Dyn., 22, 189-212, (2008) · Zbl 1161.76493
[11] Bufi, E. A.; Cinnella, P., Efficient uncertainty quantification of turbulent flows through supersonic ORC nozzle blades, Energy Procedia, 82, 186-193, (2015)
[12] Chang, P. A. III; Piomelli, U.; Blake, W. K., Relationship between wall pressure and velocity-field sources, Phys. Fluids, 11, 11, 3434-3448, (1999) · Zbl 1149.76414
[13] Chernyshenko, S. I.; Baig, M. F., The mechanism of streak formation in near-wall turbulence, J. Fluid Mech., 544, 1, 99-131, (2005) · Zbl 1083.76031
[14] Chu, B.-T.; Kovasznay, L. S. G., Non-linear interactions in a viscous heat-conducting compressible gaz, J. Fluid Mech., 3, 494-514, (1958)
[15] Chung, T. H.; Ajlan, M.; Lee, L. L.; Starling, K. E., Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Indust. Engng Chem. Res., 27, 4, 671-679, (1988)
[16] Chung, T. H.; Lee, L. L.; Starling, K. E., Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity, Indust. Engng Chem. Fundamentals, 23, 1, 8-13, (1984)
[17] Cinnella, P.; Congedo, P. M., Inviscid and viscous aerodynamics of dense gases, J. Fluid Mech., 580, 179-217, (2007) · Zbl 1113.76046
[18] Coleman, G. N.; Kim, J.; Moser, R. D., A numerical study of turbulent supersonic isothermal-wall channel flow, J. Fluid Mech., 305, 159-183, (1995) · Zbl 0960.76517
[19] Congedo, P. M.; Corre, C.; Cinnella, P., Numerical investigation of dense-gas effects in turbomachinery, Comput. Fluids, 49, 1, 290-301, (2011) · Zbl 1271.76291
[20] Cramer, M. S., Negative nonlinearity in selected fluorocarbons, Phys. Fluids, 1, 11, 1894-1897, (1989)
[21] Cramer, M. S.; Bahmani, F., Effect of large bulk viscosity on large-Reynolds-number flows, J. Fluid Mech., 751, 142-163, (2014) · Zbl 1329.76305
[22] Cramer, M. S.; Kluwick, A., On the propagation of waves exhibiting both positive and negative nonlinearity, J. Fluid Mech., 142, 1, 9-37, (1984) · Zbl 0577.76073
[23] Cramer, M. S.; Park, S., On the suppression of shock-induced separation in Bethe-Zel’dovich-Thompson fluids, J. Fluid Mech., 393, 1-21, (1999) · Zbl 0970.76052
[24] Cramer, M. S.; Tarkenton, G. M., Transonic flows of Bethe-Zel’dovich-Thompson fluids, J. Fluid Mech., 240, 197-228, (1992) · Zbl 0775.76004
[25] Cramer, M. S., Numerical estimates for the bulk viscosity of ideal gases, Phys. Fluids, 24, 6, (2012)
[26] Dean, R. B., Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow, Trans. ASME J. Fluids Engng, 100, 2, 215-223, (1978)
[27] Donzis, D. A.; Jagannathan, S., Fluctuations of thermodynamic variables in stationary compressible turbulence, J. Fluid Mech., 733, 221-244, (2013) · Zbl 1294.76183
[28] Duan, L.; Beekman, I.; Martin, M. P., Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature, J. Fluid Mech., 655, 419-445, (2010) · Zbl 1197.76078
[29] Foysi, H.; Sarkar, S.; Friedrich, R., Compressibility effects and turbulence scalings in supersonic channel flow, J. Fluid Mech., 509, 207-216, (2004) · Zbl 1066.76035
[30] Fukagata, K.; Iwamoto, K.; Kasagi, N., Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows, Phys. Fluids, 14, 11, L73-L76, (2002) · Zbl 1185.76134
[31] Gerolymos, G. A.; Sénéchal, D.; Vallet, I., Performance of very-high-order upwind schemes for DNS of compressible wall-turbulence, Intl J. Numer. Meth. Fluids, 63, 7, 769-810, (2010) · Zbl 1407.76044
[32] Gerolymos, G. A.; Vallet, I., Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow, J. Fluid Mech., 757, 701-746, (2014) · Zbl 1416.76068
[33] Gloerfelt, X.; Berland, J., Turbulent boundary-layer noise: direct radiation at Mach number 0.5, J. Fluid Mech., 723, 318-351, (2013) · Zbl 1287.76199
[34] Gomez, T.; Flutet, V.; Sagaut, P., Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows, Phys. Rev. E, 79, 3, (2009)
[35] Guardone, A.; Argrow, B. M., Nonclassical gasdynamic region of selected fluorocarbons, Phys. Fluids, 17, 11, (2005) · Zbl 1188.76058
[36] Guarini, S. E.; Moser, R. D.; Shariff, K.; Wray, A., Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5, J. Fluid Mech., 414, 1-33, (2000) · Zbl 0983.76039
[37] Huang, P. G.; Bradshaw, P.; Coakley, T. J., Skin friction and velocity profile family for compressible turbulent boundary layers, AIAA J., 31, 9, 1600-1604, (1993) · Zbl 0785.76063
[38] Huang, P. G.; Coleman, G. N.; Bradshaw, P., Compressible turbulent channel flows: DNS results and modelling, J. Fluid Mech., 305, 185-218, (1995) · Zbl 0857.76036
[39] Incropera, F. P.; Dewitt, D. P., Fundamentals of Heat and Mass Transfer, (2007), Wiley
[40] Kim, J., On the structure of pressure fluctuations in simulated turbulent channel flow, J. Fluid Mech., 205, 421-451, (1989)
[41] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133-166, (1987) · Zbl 0616.76071
[42] Lagha, M.; Kim, J.; Eldredge, J. D.; Zhong, X., A numerical study of compressible turbulent boundary layers, Phys. Fluids, 23, 1, (2011)
[43] Laufer, J.1969 Thoughts on compressible turbulent boundary layers. NASA S.P. 216.
[44] Lechner, R.; Sesterhenn, J.; Friedrich, R., Turbulent supersonic channel flow, J. Turbul., 2, 1, (2001) · Zbl 1001.76510
[45] Lee, J.; Jung, S. Y.; Sung, H. J.; Zaki, T. A., Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity, J. Fluid Mech., 726, 196-225, (2013) · Zbl 1287.76136
[46] Lee, M.; Moser, R. D., Direct numerical simulation of turbulent channel flow up to Re_𝜏 ≈ 5200, J. Fluid Mech., 774, 395-415, (2015)
[47] Li, X.; Hashimoto, K.; Tominaga, Y.; Tanahashi, M.; Miyauchi, T., Numerical study of heat transfer mechanism in turbulent supercritical CO_2 channel flow, J. Therm. Sci. Technol., 3, 1, 112-123, (2008)
[48] Martin, J. J.; Hou, Y. C., Development of an equation of state for gases, AIChE J., 1, 2, 142-151, (1955)
[49] Mathijssen, T.; Gallo, M.; Casati, E.; Nannan, N. R.; Zamfirescu, C.; Guardone, A.; Colonna, P., The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids, Exp. Fluids, 56, 10, 1-12, (2015)
[50] Modesti, D.; Pirozzoli, S., Reynolds and Mach number effects in compressible turbulent channel flow, Intl J. Heat Fluid Flow, 59, 33-49, (2016)
[51] Monaco, J. F.; Cramer, M. S.; Watson, L. T., Supersonic flows of dense gases in cascade configurations, J. Fluid Mech., 330, 31-59, (1997) · Zbl 0895.76038
[52] Moneghan, R. J.1953 A review and assessment of various formulae for tubulent skin friction in compressible flow. Tech. Rep. Aeronautical Research Council. Current Paper 142.
[53] Morinishi, Y.; Tamano, S.; Nakabayashi, K., Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls, J. Fluid Mech., 502, 273-308, (2004) · Zbl 1134.76363
[54] Morkovin, M. V.1961Effect of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A.), pp. 367-380. CNRS.
[55] Moser, R.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to re_𝜏 = 590, Phys. Fluids, 11, 943-945, (1999) · Zbl 1147.76463
[56] Neufeld, P. D.; Janzen, A. R.; Aziz, R. A., Empirical equations to calculate 16 of the transport collision integrals 𝛺(l, s)∗ for the Lennard-Jones (12-6) potential, J. Chem. Phys., 57, 3, 1100-1102, (1972)
[57] Nicoud, F. & Poinsot, T.1999DNS of a channel flow with variable properties. In Proceedings of First International Symposium on Turbulence and Shear Flow Phenomena, TSFP-1, Santa Barbara, USA, TSFP.
[58] Patel, A.; Peeters, J. W. R.; Boersma, B. J.; Pecnik, R., Semi-local scaling and turbulence modulation in variable property turbulent channel flows, Phys. Fluids, 27, 9, (2015)
[59] Pirozzoli, S.; Bernardini, M., Turbulence in supersonic boundary layers at moderate Reynolds number, J. Fluid Mech., 688, 120-168, (2011) · Zbl 1241.76286
[60] Pirozzoli, S.; Grasso, F.; Gatski, T. B., Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2. 25, Phys. Fluids, 16, 3, 530-545, (2004) · Zbl 1186.76423
[61] Poling, B. E., Prausnitz, J. M., O’Connell, J. P. & Reid, R. C.2001The Properties of Gases and Liquids, vol. 5. McGraw-Hill.
[62] Rubesin, M. W.1990 Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. NASA Contractor Rep. 177556.
[63] Sarkar, S., The stabilizing effect of compressibility in turbulent shear flow, J. Fluid Mech., 282, 163-186, (1995) · Zbl 0825.76309
[64] Sciacovelli, L. & Cinnella, P.2015Numerical simulation of dense gas compressible homogeneous isotropic turbulence. In 15th European Turbulence Conference, EUROMECH/ETC15. · Zbl 1374.76084
[65] Sciacovelli, L.; Cinnella, P.; Content, C.; Grasso, F., Dense gas effects in inviscid homogeneous isotropic turbulence, J. Fluid Mech., 800, 1, 140-179, (2016)
[66] Sciacovelli, L., Cinnella, P. & Grasso, F.2016b Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. J. Fluid Mech. (submitted). · Zbl 1374.76084
[67] Sewall, E. A.; Tafti, D. K., A time-accurate variable property algorithm for calculating flows with large temperature variations, Comput. Fluids, 37, 51-63, (2008) · Zbl 1194.76185
[68] Sieder, E. N.; Tate, G. E., Heat transfer and pressure drop of liquids in tubes, Indust. Engng Chem., 28, 12, 1429-1435, (1936)
[69] Spina, E. F.; Smits, A. J.; Robinson, S. K., The physics of supersonic turbulent boundary layers, Annu. Rev. Fluid Mech., 26, 287-319, (1994)
[70] Spinelli, A.; Pini, M.; Dossena, V.; Gaetani, P.; Casella, F., Design, simulation, and construction of a test rig for organic vapors, Trans. ASME J. Engng Gas Turbines Power, 135, 4, (2013)
[71] Tamano, S.; Morinishi, Y., Effect of different thermal wall boundary conditions on compressible turbulent channel flow at M = 1. 5, J. Fluid Mech., 548, 361-373, (2006)
[72] Teitel, M.; Antonia, R. A., Heat transfer in fully developed turbulent channel flow: comparison between experiment and direct numerical simulations, Intl J. Heat Mass Transfer, 36, 6, 1701-1706, (1993)
[73] Thompson, P. A., A fundamental derivative in gasdynamics, Phys. Fluids, 14, 9, 1843-1849, (1971) · Zbl 0236.76053
[74] Trettel, A.; Larsson, J., Mean velocity scaling for compressible wall turbulence with heat transfer, Phys. Fluids, 28, 2, (2016)
[75] Van Driest, E. R., Turbulent boundary layer in compressible fluids, J. Aero. Sci., 18, 3, 145-160, (1951) · Zbl 0045.12903
[76] Wallace, J. M., Quadrant analysis in turbulence research: history and evolution, Annu. Rev. Fluid Mech., 48, 131-158, (2016) · Zbl 1356.76107
[77] Wei, L.; Pollard, A., Interactions among pressure, density, vorticity and their gradients in compressible turbulent channel flows, J. Fluid Mech., 673, 1-18, (2011) · Zbl 1225.76168
[78] Zonta, F., Nusselt number and friction factor in thermally stratified turbulent channel flow under Non-Oberbeck-Boussinesq conditions, Intl J. Heat Fluid Flow, 44, 489-494, (2013)
[79] Zonta, F.; Marchioli, C.; Soldati, A., Modulation of turbulence in forced convection by temperature-dependent viscosity, J. Fluid Mech., 697, 150-174, (2012) · Zbl 1250.76110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.