×

zbMATH — the first resource for mathematics

On the generation of large-scale eddy-driven patterns: the average eddy model. (English) Zbl 1383.76272
Summary: A theoretical model is developed which illustrates the dynamics of the spontaneous generation of large-scale structures in baroclinically unstable eddying flows. Techniques of asymptotic multiscale analysis are used to identify instabilities resulting from the positive feedback of the background eddies on large-scale perturbations. The novelty of the proposed approach lies in the choice of a dynamically consistent time-dependent background eddy field, which is taken from simulations of baroclinic instability in the Phillips two-layer system. The resulting solutions differ considerably from those of traditional multiscale models, in which the background eddy field is represented by steady analytical patterns. The present formulation makes it possible to (i) test the multiscale theory against the corresponding numerical simulations, (ii) unambiguously interpret the key physical processes at play and (iii) rationalize the emergence of large-scale patterns for certain background parameters. While the proposed approach to multiscale modelling is illustrated on a particular example of the Phillips baroclinic instability model, it is our belief that the presented technique is readily adaptable to a wide range of applications.

MSC:
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76E20 Stability and instability of geophysical and astrophysical flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balmforth, N. J.; Young, Y.-N., Stratified Kolmogorov flow, J. Fluid Mech., 450, 131-167, (2002) · Zbl 1041.76023
[2] Balmforth, N. J.; Young, Y.-N., Stratified Kolmogorov flow. Part 2, J. Fluid Mech., 528, 23-42, (2005) · Zbl 1163.76358
[3] Benilov, E. S., The dynamics of a near-surface vortex in a two-layer ocean on the beta-plane, J. Fluid Mech., 420, 277-299, (2000) · Zbl 1009.76096
[4] Bensoussan, A.; Lions, J.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures, (1978), North-Holland · Zbl 0404.35001
[5] Berloff, P.; Kamenkovich, I.; Pedlosky, J., A mechanism of formation of multiple zonal jets in the oceans, J. Fluid Mech., 628, 395-425, (2009) · Zbl 1181.76071
[6] Berloff, P.; Karabasov, S.; Farrar, T.; Kamenkovich, I., On latency of multiple zonal jets in the oceans, J. Fluid Mech., 686, 534-567, (2011) · Zbl 1241.76427
[7] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I: interfacial free energy, J. Chem. Phys., 28, 258-267, (1958)
[8] Chaves, M.; Gama, S., Time evolution of the eddy viscosity in two-dimensional Navier-Stokes flow, Phys. Rev. E, 61, 2118-2120, (2000)
[9] Connaughton, C. P.; Nadiga, B. T.; Nazarenko, S. V.; Quinn, B. E., Modulational instability of Rossby and drift waves and generation of zonal jets, J. Fluid Mech., 654, 207-231, (2010) · Zbl 1193.76059
[10] Cummins, P. F.; Holloway, G., Reynolds stress and eddy viscosity in direct numerical simulations of sheared two-dimensional turbulence, J. Fluid. Mech., 657, 394-412, (2010) · Zbl 1197.76067
[11] Cushman-Roisin, B.; Mclaughlin, D.; Papanicolaou, G., Interactions between mean flow and finite-amplitude mesoscale eddies in a barotropic ocean, Geophys. Astrophys. Fluid Dyn., 29, 333-353, (1984) · Zbl 0558.76024
[12] Dritschel, D.; Mcintyre, M., Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers, J. Atmos. Sci., 65, 855-874, (2008)
[13] Frisch, U.; Legras, B.; Villone, B., Large scale Kolmogorov flow on the beta-plane and resonant wave interaction, Physica D, 94, 36-56, (1996) · Zbl 0899.76230
[14] Frisch, U.; She, Z.; Sulem, P., Large-scale flow driven by the anisotropic kinetic alpha effect, Physica D, 28, 382-392, (1987)
[15] Gama, S.; Vergassola, M.; Frisch, U., Negative eddy viscosity in isotropically forced 2-dimensional flow – linear and nonlinear dynamics, J. Fluid Mech., 260, 95-126, (1994)
[16] Gille, S.; Davis, R., The influence of mesoscale eddies on coarsely resolved density: an examination of subgrid-scale parameterization, J. Phys. Oceanogr., 29, 1109-1123, (1999)
[17] Held, I., Momentum transport by quasi-geostrophic eddies, J. Atmos. Sci., 32, 1494-1497, (1975)
[18] Held, I. M.; Larichev, V. D., A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane, J. Atmos. Sci., 53, 946-952, (1996)
[19] Huang, H.-P.; Robinson, W., Two-dimensional turbulence and persistent zonal jets in a global barotropic model, J. Atmos. Sci., 55, 611-632, (1998)
[20] Jansen, M. F.; Adcroft, A. J.; Hallberg, R.; Held, I. M., Parameterization of eddy fluxes based on a mesoscale energy budget, Ocean Model., 92, 28-41, (2015)
[21] Jansen, M. F.; Held, I. M., Parameterizing subgrid-scale eddy effects using energetically consistent backscatter, Ocean Model., 80, 36-48, (2014)
[22] Kamenkovich, I.; Berloff, P.; Pedlosky, J., Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic, J. Phys. Oceanogr., 39, 3162-3175, (2009)
[23] Kamenkovich, I.; Rypina, I.; Berloff, P., Properties and origins of the anisotropic eddy-induced transport in the North Atlantic, J. Phys. Oceanogr., 45, 778-791, (2015)
[24] Kamenkovich, V. M.; Koshlyakov, M. N.; Monin, A. S., Synoptic Eddies in the Ocean, (1986), Springer
[25] Kevorkian, J. & Cole, J. D.1996Multiple Scale and Singular Perturbation Methods, p. 632. Springer. doi:10.1007/978-1-4612-3968-0 · Zbl 0846.34001
[26] Kraichnan, R.; Montgomery, D., Two-dimensional turbulence, Rep. Prog. Phys., 43, 547-619, (1980)
[27] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417-1423, (1967)
[28] Lacasce, J.; Pedlosky, J., The instability of Rossby basin modes and the oceanic eddy field, J. Phys. Oceanogr., 34, 2027-2041, (2004)
[29] Larichev, V. D.; Held, I. M., Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability, J. Phys. Oceanogr., 25, 2285-2297, (1995)
[30] Legras, B.; Villone, B., Large-scale instability of a generalized turbulent Kolmogorov flow, Nonlinear Process. Geophys., 16, 569-577, (2009)
[31] Lorenz, E. N., Barotropic instability of Rossby wave motion, J. Atmos. Sci., 29, 258-269, (1972)
[32] Manfroi, A.; Young, W., Slow evolution of zonal jets on the beta plane, J. Atmos. Sci., 56, 784-800, (1999)
[33] Manfroi, A.; Young, W., Stability of beta-plane Kolmogorov flow, Physica D, 162, 208-232, (2002) · Zbl 0983.86002
[34] Matulka, A. M.; Afanasyev, Y. D., Zonal jets in equilibrating baroclinic instability on the polar beta-plane: experiments with altimetry, J. Geophys. Res. Oceans, 120, 6130-6144, (2015)
[35] Maximenko, N.; Bang, B.; Sasaki, H., Observational evidence of alternating zonal jets in the world ocean, Geophys. Res. Lett., 32, (2005)
[36] Mcwilliams, J. C.; Chow, J. H. S., Equilibrium geostrophic turbulence. I: a reference solution in a beta-plane channel, J. Phys. Oceanogr., 11, 921-949, (1981)
[37] Mei, C. C.; Vernescu, M., Homogenization Methods for Multiscale Mechanics, (2010), World Scientific Publishing · Zbl 1210.74005
[38] Melnichenko, O. V.; Maximenko, N. A.; Schneider, N.; Sasaki, H., Quasi-stationary striations in basin-scale oceanic circulation: vorticity balance from observations and eddy-resolving model, Ocean Dyn., 60, 653-666, (2010)
[39] Meshalkin, L.; Sinai, Y., Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid, Z. Angew. Math. Mech., 25, 1700-1705, (1961) · Zbl 0108.39501
[40] Nadiga, B., On zonal jets in oceans, Geophys. Res. Lett., 33, (2006)
[41] Nadiga, B. T.; Straub, D. N., Alternating zonal jets and energy fluxes in barotropic wind-driven gyres, Ocean Model., 33, 257-269, (2010)
[42] Nakamura, M.; Chao, Y., On the eddy isopycnal thickness diffusivity of the Gent-McWilliams subgrid mixing parameterization, J. Clim., 13, 502-510, (2000)
[43] Nakano, H.; Hasumi, H., A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models, J. Phys. Oceanogr., 35, 474-488, (2005)
[44] Nepomnyashchy, A., On the stability of the secondary flow of a viscous fluid in an infinite domain, Z. Angew. Math. Mech. Appl. Math. Mech., 40, 886-891, (1976)
[45] Nof, D., On the beta-induced movement of isolated baroclinic eddies, J. Phys. Oceanogr., 11, 1662-1672, (1981)
[46] Nof, D., On the migration of isolated eddies with application to Gulf Stream rings, J. Mar. Res., 41, 399-425, (1983)
[47] Novikov, A.; Papanicolau, G., Eddy viscosity of cellular flows, J. Fluid Mech., 446, 173-198, (2001) · Zbl 0997.76030
[48] Nowlin, W.; Klinck, J., The physics of the Antarctic circumpolar current, Rev. Geophys., 24, 469-491, (1986)
[49] Orsi, A. H.; Whitworth, T.; Nowlin, W., On the meridional extent and fronts of the Antarctic circumpolar current, Deep-Sea Res., 42, 641-673, (1995)
[50] Pedlosky, J., Finite-amplitude baroclinic waves, J. Atmos. Sci., 27, 15-30, (1970)
[51] Pedlosky, J., Geophysical Fluid Dynamics, (1987), Springer · Zbl 0713.76005
[52] Phillips, N. A., A simple three-dimensional model for the study of large scale extra tropical flow pattern, J. Met., 8, 381-394, (1951)
[53] Radko, T., On the generation of large-scale structures in a homogeneous eddy field, J. Fluid Mech., 668, 76-99, (2011) · Zbl 1225.76134
[54] Radko, T., Mechanics of thermohaline interleaving: beyond the empirical flux laws, J. Fluid Mech., 675, 117-140, (2011) · Zbl 1241.76216
[55] Radko, T., Eddy viscosity and diffusivity in the modon-sea model, J. Mar. Res., 69, 723-752, (2011)
[56] Radko, T., Applicability and failure of the flux-gradient laws in double-diffusive convection, J. Fluid Mech., 750, 33-72, (2014)
[57] Radko, T.; Peixoto De Carvalho, D.; Flanagan, J., Nonlinear equilibration of baroclinic instability: the growth rate balance model, J. Phys. Oceanogr., 44, 1919-1940, (2014)
[58] Radko, T.; Stern, M. E., On the propagation of oceanic mesoscale vortices, J. Fluid Mech., 380, 39-57, (1999) · Zbl 0946.76009
[59] Radko, T.; Stern, M. E., Self-propagating eddies on the stratifed f-plane, J. Phys. Oceanogr., 30, 3134-3144, (2000)
[60] Reznik, G. M.; Dewar, W. K., An analytical theory of distributed axisymmetrical barotropic vortices on the beta-plane, J. Fluid Mech., 269, 301-321, (1994) · Zbl 0809.76013
[61] Rhines, P. B.1977The dynamics of unsteady currents. In The Sea (ed. Goldberg, E. A.et al.), , vol. 6, pp. 189-318. Wiley.
[62] Rhines, P. B., Jets, Chaos, 4, 313-339, (1994)
[63] Richards, K.; Maximenko, N.; Bryan, F.; Sasaki, H., Zonal jets in the Pacific Ocean, Geophys. Res. Lett., 33, (2006)
[64] Roberts, M.; Marshall, D., On the validity of downgradient eddy closures in ocean models, J. Geophys. Res., 105, 28613-28627, (2000)
[65] Robinson, A. R.(Ed.) 1983Eddies in Marine Science. Springer. doi:10.1007/978-3-642-69003-7
[66] Shepherd, T. G., Nonlinear saturation of baroclinic instability. Part I: the two-layer model, J. Atmos. Sci., 45, 2014-2025, (1988)
[67] Sivashinsky, G., Weak turbulence in periodic flows, Physica D, 17, 243-255, (1985) · Zbl 0577.76045
[68] Sokolov, S.; Rintoul, S., Multiple jets of the Antarctic circumpolar current south of Australia, J. Phys. Oceanogr., 37, 1394-1412, (2007)
[69] Srinivasan, K.; Young, W. R., Zonostrophic instability, J. Atmos. Sci., 69, 1633-1656, (2012)
[70] Starr, V. P., Physics of Negative Viscosity Phenomena, (1968), McGraw-Hill
[71] Stern, M. E., The ‘salt-fountain’ and thermohaline convection, Tellus, 12, 172-175, (1960)
[72] Sulem, P.; She, Z.; Scholl, H.; Frisch, U., Generation of large-scale structures in three-dimensional flow lacking parity-invariance, J. Fluid Mech., 205, 341-358, (1989)
[73] Sutyrin, G. G.; Dewar, W. K., Almost symmetrical solitary eddies in a 2-layer ocean, J. Fluid Mech., 238, 633-656, (1992) · Zbl 0764.76009
[74] Thompson, A. F.; Young, W. R., Scaling baroclinic eddy fluxes: vortices and energy balance, J. Phys. Oceanogr., 36, 720-738, (2006)
[75] Thompson, A. F.; Young, W. R., Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance, J. Atmos. Sci., 64, 3214-3231, (2007)
[76] Wirth, A.; Gama, S.; Frisch, U., Eddy viscosity of three-dimensional flow, J. Fluid Mech., 288, 249-264, (1995) · Zbl 0854.76034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.