×

An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. (English) Zbl 1383.76240

Summary: A refined scaling analysis of the two-dimensional mean momentum balance (MMB) for the zero-pressure-gradient turbulent boundary layer (TBL) is presented and experimentally investigated up to high friction Reynolds numbers, \(\delta^{+}\). For canonical boundary layers, the mean inertia, which is a function of the wall-normal distance, appears instead of the constant mean pressure gradient force in the MMB for pipes and channels. The constancy of the pressure gradient has led to theoretical treatments for pipes/channels, that are more precise than for the TBL. Elements of these analyses include the logarithmic behaviour of the mean velocity, specification of the Reynolds shear stress peak location, the square-root Reynolds number scaling for the log layer onset and a well-defined layer structure based on the balance of terms in the MMB. The present analyses evidence that similarly well-founded results also hold for turbulent boundary layers. This follows from transforming the mean inertia term in the MMB into a form that resembles that in pipes/channels, and is constant across the outer inertial region of the TBL. The physical reasoning is that the mean inertia is primarily a large-scale outer layer contribution, the ’shape’ of which becomes invariant of \(\delta^{+}\) with increasing \(\delta^{+}\), and with a ’magnitude’ that is inversely proportional to \(\delta^{+}\). The present analyses are enabled and corroborated using recent high resolution, large Reynolds number hot-wire measurements of all the terms in the TBL MMB.

MSC:

76F40 Turbulent boundary layers
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Chauhan, K. A.; Monkewitz, P. A.; Nagib, H. M., Criteria for assessing experiments in zero pressure gradient boundary layers, Fluid Dyn. Res., 41, 2, (2009) · Zbl 1286.76007 · doi:10.1088/0169-5983/41/2/021404
[2] Chin, C.; Philip, J.; Klewicki, J. C.; Ooi, A.; Marusic, I., Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows, J. Fluid Mech., 757, 747-769, (2014) · doi:10.1017/jfm.2014.486
[3] Del Alamo, J. C.; Jiménez, J.; Zandonade, P.; Moser, R. D., Scaling of the energy spectra of turbulent channels, J. Fluid Mech., 500, 135-144, (2004) · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[4] Fife, P.; Klewicki, J.; Mcmurtry, P.; Wei, T., Multiscaling in the presence of indeterminancy: wall-induced turbulence, Multiscale Model. Simul., 4, 936-959, (2005) · Zbl 1108.76030 · doi:10.1137/040611173
[5] Fife, P.; Klewicki, J.; Wei, T., Time averaging in turbulence settings may reveal an infinite hierarchy of length scales, J. Discrete Continuous Dyn. Syst. A, 24, 781-807, (2009) · Zbl 1165.76020 · doi:10.3934/dcds.2009.24.781
[6] Fife, P.; Wei, T.; Klewicki, J.; Mcmurtry, P., Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows, J. Fluid Mech., 532, 165-189, (2005) · Zbl 1086.76022 · doi:10.1017/S0022112005003988
[7] Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y., Friction factor and mean velocity profile for pipe flow at high Reynolds numbers, Phys. Fluids, 27, 9, (2015) · doi:10.1063/1.4930987
[8] George, W. K., Is there a universal log law for turbulent wall-bounded flows?, Phil. Trans. R. Soc. Lond. A, 365, 789-806, (2007) · Zbl 1152.76405 · doi:10.1098/rsta.2006.1941
[9] George, W. K.; Castillo, L., Zero-pressure gradient turbulent boundary layer, Appl. Mech. Rev., 50, 689-729, (1997) · doi:10.1115/1.3101858
[10] Jones, M. B.; Nickels, T. B.; Marusic, I., On the asymptotic similiarity of the zero-pressure gradient turbulent boundary layer, J. Fluid Mech., 616, 195-203, (2008) · Zbl 1155.76032 · doi:10.1017/S0022112008004205
[11] Klewicki, J.; Oberlack, M., Finite Reynolds number properties of a turbulent channel flow similarity solution, Phys. Fluids, 27, 9, (2015) · doi:10.1063/1.4931651
[12] Klewicki, J. C., Reynolds number dependence, scaling, and dynamics of turbulent boundary layers, Trans. ASME J. Fluids Engng, 132, 9, (2010) · doi:10.1115/1.4002167
[13] Klewicki, J. C., A description of turbulent wall-flow vorticity consistent with mean dynamics, J. Fluid Mech., 737, 176-204, (2013) · Zbl 1294.76179 · doi:10.1017/jfm.2013.565
[14] Klewicki, J. C., Self – similar mean dynamics in turbulent wall flows, J. Fluid Mech., 718, 596-621, (2013) · Zbl 1284.76205 · doi:10.1017/jfm.2012.626
[15] Klewicki, J. C.; Fife, P.; Wei, T., A physical model of the turbulent boundary layer consonant with mean momentum balance structure, Phil. Trans. Math. Phys. Engng Sci., 365, 823-839, (2007) · Zbl 1152.76407 · doi:10.1098/rsta.2006.1944
[16] Klewicki, J. C.; Fife, P.; Wei, T., On the logarithmic mean profile, J. Fluid Mech., 638, 73-93, (2009) · Zbl 1183.76766 · doi:10.1017/S002211200999084X
[17] Klewicki, J. C.; Philip, J.; Marusic, I.; Chauhan, K.; Morrill-Winter, C., Self-similarity in the inertial region of wall turbulence, Phys. Rev. E, 90, 6, (2014)
[18] Lighthill, M. J., On displacement thickness, J. Fluid Mech., 4, 4, 383-392, (1958) · Zbl 0081.40805 · doi:10.1017/S0022112058000525
[19] Marusic, I.; Kunkel, G. J., Streamwise turbulence intensity formulation for flat – plate boundary layers, Phys. Fluids, 15, 8, 2461-2464, (2003) · Zbl 1186.76353 · doi:10.1063/1.1589014
[20] Marusic, I.; Monty, J.; Hultmark, M.; Smits, A., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, R3, (2013) · Zbl 1284.76206 · doi:10.1017/jfm.2012.511
[21] Mellor, G. L., The large Reynolds number, asymptotic theory of turbulent boundary layers, Intl J. Engng Sci., 10, 10, 851-873, (1972) · doi:10.1016/0020-7225(72)90055-9
[22] Metzger, M.; Lyons, A.; Fife, P., Mean momentum balance in moderately favourable pressure gradient turbulent boundary layers, J. Fluid Mech., 617, 107-140, (2008) · Zbl 1175.76020 · doi:10.1017/S0022112008003637
[23] Millikan, C.1939A critical discussion of turbulent flow in channels and circular tubes. In Proceedings of the Fifth International Congress for Applied Mechancs. Wiley. · JFM 65.0993.01
[24] Morrill-Winter, C.; Klewicki, J.; Baidya, R.; Marusic, I., Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers, Exp. Fluids, 56, 12, 1-14, (2015) · doi:10.1007/s00348-015-2084-6
[25] Nickels, T. B.; Marusic, I.; Hafez, S.; Hutchins, N.; Chong, M. S., Some predictions of the attached eddy model for a high Reynolds number boundary layer, Phil. Trans. R. Soc. Lond. A, 365, 1852, 807-822, (2007) · Zbl 1152.76414 · doi:10.1098/rsta.2006.1950
[26] Panton, R. L., Review of wall turbulence as described by composite expansions, Appl. Mech. Rev., 58, 1-36, (2005) · doi:10.1115/1.1840903
[27] Perry, A. E.; Chong, M. S., On the mechanisms of wall turbulence, J. Fluid Mech., 119, 173-217, (1982) · Zbl 0517.76057 · doi:10.1017/S0022112082001311
[28] Sillero, J. A.; Jiménez, J.; Moser, R. D., One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+≈ 2000, Phys. Fluids, 25, 10, (2013) · doi:10.1063/1.4823831
[29] Talluru, K. M.; Djenidi, L.; Kamruzzaman, M.; Antonia, R. A., Self-preservation in a zero pressure gradient rough-wall turbulent boundary layer, J. Fluid Mech., 788, 57-69, (2016) · Zbl 1381.76112 · doi:10.1017/jfm.2015.665
[30] Tomkins, C. D.; Adrian, R. J., Spanwise structure and scale growth in turbulent boundary layers, J. Fluid Mech., 490, 37-74, (2003) · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[31] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University Press · Zbl 0325.76063
[32] Vincenti, P.; Klewicki, J. C.; Morrill-Winter, C.; White, C. M.; Wosnik, M., Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number, Exp. Fluids, 54, 12, 1-13, (2013) · doi:10.1007/s00348-013-1629-9
[33] Wei, T.; Fife, P.; Klewicki, J.; Mcmurtry, P., Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows, J. Fluid Mech., 522, 303-327, (2005) · Zbl 1065.76106 · doi:10.1017/S0022112004001958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.