zbMATH — the first resource for mathematics

Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. (English) Zbl 1383.76238
Summary: The effect of large-scale motions (LSMs) on the turbulent/non-turbulent (T/NT) interface is examined in a turbulent boundary layer. Using flow fields from direct numerical simulation, the shape of the interface and near-interface statistics are evaluated conditional on the position of the LSM. The T/NT interface is identified using the vorticity magnitude and a streak detection algorithm is adopted to identify and track the LSMs. Two-point correlation and spectral analysis of variations in the interface height show that the spatial undulation of the interface is longer in streamwise wavelength than the boundary-layer thickness, and grows with the Reynolds number in a similar manner to the LSMs. The average variation in the interface height was evaluated conditional on the position of the LSMs. The result provides statistical evidence that the interface is locally modulated by the LSMs in both the streamwise and spanwise directions. The modulation is different when the coherent structure is high- versus low-speed motion: high-speed structures lead to a wedge-shaped deformation of the T/NT interface, which causes an anti-correlation between the angles of the interface and the internal shear layer. On the other hand, low-speed structures are correlated with crests in the interface. Finally, the sudden changes in turbulence statistics across the interface are in line with the changes in the population of low-speed structures, which consist of slower mean streamwise velocity and stronger turbulence than the high-speed counterparts.

76F40 Turbulent boundary layers
Full Text: DOI
[1] Adrian, R. J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 4, (2007) · Zbl 1146.76307
[2] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503
[3] Bisset, D. K.; Hunt, J. C.; Rogers, M. M., The turbulent/non-turbulent interface bounding a far wake, J. Fluid Mech., 451, 383-410, (2002) · Zbl 1156.76397
[4] Borrell, G.; Jiménez, J., Properties of the turbulent/non-turbulent interface in boundary layers, J. Fluid Mech., 801, 554-596, (2016)
[5] Chauhan, K.; Philip, J.; Marusic, I., Scaling of the turbulent/non-turbulent interface in boundary layers, J. Fluid Mech., 751, 298-328, (2014)
[6] Chauhan, K.; Philip, J.; De Silva, C. M.; Hutchins, N.; Marusic, I., The turbulent/non-turbulent interface and entrainment in a boundary layer, J. Fluid Mech., 742, 119-151, (2014)
[7] Christensen, K. T.; Adrian, R. J., Statistical evidence of hairpin vortex packets in wall turbulence, J. Fluid Mech., 431, 433-443, (2001) · Zbl 1008.76029
[8] Chung, D.; Mckeon, B. J., Large-eddy simulation of large-scale structures in long channel flow, J. Fluid Mech., 661, 341-364, (2010) · Zbl 1205.76146
[9] Corrsin, S.; Kistler, A. L., Free-Stream Boundaries of Turbulent Flows, (1955), NACA
[10] Dennis, D. J. C.; Nickels, T. B., Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures, J. Fluid Mech., 673, 218-244, (2011) · Zbl 1225.76034
[11] Eisma, J.; Westerweel, J.; Ooms, G.; Elsinga, G. E., Interfaces and internal layers in a turbulent boundary layer, Phys. Fluids, 27, 5, (2015)
[12] Ganapathisubramani, B.; Hutchins, N.; Hambleton, W. T.; Longmire, E. K.; Marusic, I., Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations, J. Fluid Mech., 524, 1, 57-80, (2005) · Zbl 1060.76503
[13] Ganapathisubramani, B.; Longmire, E. K.; Marusic, I., Characteristics of vortex packets in turbulent boundary layers, J. Fluid Mech., 478, 35-46, (2003) · Zbl 1032.76500
[14] Hack, M. J. P.; Zaki, T. A., Streak instabilities in boundary layers beneath free-stream turbulence, J. Fluid Mech., 741, 280-315, (2014)
[15] Hwang, J.; Lee, J.; Sung, H. J.; Zaki, T. A., Inner-outer interactions of large-scale structures in turbulent channel flow, J. Fluid Mech., 790, 128-157, (2016) · Zbl 1382.76124
[16] Ishihara, T.; Ogasawara, H.; Hunt, J. C., Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers, J. Fluids Struct., 53, 50-57, (2015)
[17] Jahanbakhshi, R.; Madnia, C. K., Entrainment in a compressible turbulent shear layer, J. Fluid Mech., 797, 564-603, (2016)
[18] Jahanbakhshi, R.; Vaghefi, N. S.; Madnia, C. K., Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer, Phys. Fluids, 27, 10, (2015)
[19] Jiménez, J.; Hoyas, S.; Simens, M. P.; Mizuno, Y., Turbulent boundary layers and channels at moderate Reynolds numbers, J. Fluid Mech., 657, 335-360, (2010) · Zbl 1197.76063
[20] Jung, S. Y.; Zaki, T. A., The effect of a low-viscosity near-wall film on bypass transition in boundary layers, J. Fluid Mech., 772, 330-360, (2015)
[21] Kong, H.; Choi, H.; Lee, J. S., Direct numerical simulation of turbulent thermal boundary layers, Phys. Fluids, 12, 10, 2555-2568, (2000) · Zbl 1184.76298
[22] Kwon, Y. S.; Hutchins, N.; Monty, J. P., On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers, J. Fluid Mech., 794, 5-16, (2016)
[23] Kwon, Y. S.; Philip, J.; De Silva, C. M.; Hutchins, N.; Monty, J. P., The quiescent core of turbulent channel flow, J. Fluid Mech., 751, 228-254, (2014) · Zbl 1416.76063
[24] Lee, J.; Ahn, J.; Sung, H. J., Comparison of large- and very-large-scale motions in turbulent pipe and channel flows, Phys. Fluids, 27, 2, (2015)
[25] Lee, J.; Jung, S. Y.; Sung, H. J.; Zaki, T. A., Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity, J. Fluid Mech., 726, 196-225, (2013) · Zbl 1287.76136
[26] Lee, J.; Lee, J. H.; Choi, J.-I.; Sung, H. J., Spatial organization of large-and very-large-scale motions in a turbulent channel flow, J. Fluid Mech., 749, 818-840, (2014)
[27] Lozano-Durán, A.; Flores, O.; Jiménez, J., The three-dimensional structure of momentum transfer in turbulent channels, J. Fluid Mech., 694, 100-130, (2012) · Zbl 1250.76108
[28] Min, T.; Kim, J., Effects of hydrophobic surface on skin-friction drag, Phys. Fluids, 16, 7, L55-L58, (2004) · Zbl 1186.76377
[29] Nolan, K. P.; Zaki, T. A., Conditional sampling of transitional boundary layers in pressure gradients, J. Fluid Mech., 728, 306-339, (2013) · Zbl 1291.76106
[30] Rosenfeld, M.; Kwak, D.; Vinokur, M., A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems, J. Comput. Phys., 94, 1, 102-137, (1991) · Zbl 0718.76079
[31] Schlatter, P.; Örlü, R., Assessment of direct numerical simulation data of turbulent boundary layers, J. Fluid Mech., 659, 116-126, (2010) · Zbl 1205.76139
[32] Schlatter, P.; Örlü, R., Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects, J. Fluid Mech., 710, 5-34, (2012) · Zbl 1275.76144
[33] Schlatter, P.; Örlü, R.; Li, Q.; Brethouwer, G.; Fransson, J. H. M.; Johansson, A. V.; Alfredsson, P. H.; Henningson, D. S., Turbulent boundary layers up to Re_𝜃 = 2500 studied through simulation and experiment, Phys. Fluids, 21, 5, (2009) · Zbl 1183.76457
[34] Sillero, J. A.; Jiménez, J.; Moser, R. D., Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+ ≈ 2000, Phys. Fluids, 26, 10, (2014)
[35] Da Silva, C. B.; Hunt, J. C. R.; Eames, I.; Westerweel, J., Interfacial layers between regions of different turbulence intensity, Annu. Rev. Fluid Mech., 46, 567-590, (2014) · Zbl 1297.76074
[36] De Silva, C. M.; Hutchins, N.; Marusic, I., Uniform momentum zones in turbulent boundary layers, J. Fluid Mech., 786, 309-331, (2016) · Zbl 1381.76106
[37] De Silva, C. M.; Philip, J.; Chauhan, K.; Meneveau, C.; Marusic, I., Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers, Phys. Rev. Lett., 111, 1-5, (2013)
[38] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University press · Zbl 0325.76063
[39] Vinuesa, R.; Bobke, A.; Örlü, R.; Schlatter, P., On determining characteristic length scales in pressure-gradient turbulent boundary layers, Phys. Fluids, 28, 5, (2016) · Zbl 1383.76220
[40] Wallace, J. M., Quadrant analysis in turbulence research: history and evolution, Annu. Rev. Fluid Mech., 48, 131-158, (2016) · Zbl 1356.76107
[41] Zaki, T. A., From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition, Flow Turbul. Combust., 91, 3, 451-473, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.