zbMATH — the first resource for mathematics

Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. (English) Zbl 1383.76123
Summary: Linear instability waves, or wavepackets, are key building blocks for the jet-noise problem. It has been shown in previous work that linear models correctly predict the evolution of axisymmetric wavepackets up to the end of the potential core of subsonic turbulent jets. Beyond this station, linear models fail, and nonlinearity is the likely missing piece. The essential underlying nonlinear mechanisms are unknown, and it remains unclear how these should be incorporated in a reduced-order model. The nonlinear interactions are considered in this work as an external’ harmonic forcing added to the standard linear model. This modelling framework is explored using a locally parallel resolvent analysis to determine optimal forcing and associated responses, and a global approach based on 4D-Var data assimilation aimed at finding the optimal forcing of the parabolised stability equations that would minimise errors in the predictions of wavepackets. In all of the problems considered, the critical layer is found to be relevant: it is the position where sensitivity of wavepackets to nonlinearity is greatest. It is seen that disturbances are forced around the critical layer, and tilted by shear as they are advected, in a manner suggestive of an Orr-like mechanism. The ensemble of results suggests that critical-layer effects play a central role in the dynamics of wavepackets in subsonic turbulent jets, and that inclusion of such effects may remedy the shortcomings of linear reduced-order models.

76D25 Wakes and jets
76Exx Hydrodynamic stability
Full Text: DOI
[1] Adam, J., The critical layers and other singular regions in ideal hydrodynamics and magnetohydrodynamics, Astrophys. Space Sci., 105, 2, 401-412, (1984) · Zbl 0559.76110
[2] Airiau, C.; Bottaro, A.; Walther, S.; Legendre, D., A methodology for optimal laminar flow control: application to the damping of Tollmien-Schlichting waves in a boundary layer, Phys. Fluids, 15, 5, 1131-1145, (2003) · Zbl 1186.76015
[3] Alazard, T., Low Mach number limit of the full Navier-Stokes equations, Arch. Rat. Mech. Anal., 180, 1, 1-73, (2006) · Zbl 1108.76061
[4] Ansaldi, A. & Airiau, C.2015 Sensitivity analysis for subsonic jet using adjoint of non local stability equations. In 21th AIAA/CEAS Aeroacoustic Conference and Exhibit. 22-26 June, Dallas, Texas, AIAA Paper 2015-2219.
[5] Baqui, Y. B.; Agarwal, A.; Cavalieri, A. V. G.; Sinayoko, S., A coherence-matched linear source mechanism for subsonic jet noise, J. Fluid Mech., 776, 235-267, (2015)
[6] Beneddine, S.; Sipp, D.; Arnault, A.; Dandois, J.; Lesshafft, L., Conditions for validity of mean flow stability analysis, J. Fluid Mech., 798, 485-504, (2016) · Zbl 1422.76070
[7] Bewley, T. R.; Moin, P.; Temam, R., DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid Mech., 447, 179-225, (2001) · Zbl 1036.76027
[8] Brambley, E. J.; Darau, M.; Rienstra, S. W., The critical layer in linear-shear boundary layers over acoustic linings, J. Fluid Mech., 710, 545-568, (2012) · Zbl 1275.76182
[9] Breakey, D. E. S., Jordan, P., Cavalieri, A. V. G., Léon, O., Zhang, M., Lehnasch, G., Colonius, T. & Rodriguez, D.2013 Near-field wavepackets and the far-field sound of a subsonic jet. In 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083.
[10] Campos, L. M. B. C.; Oliveira, J. M. G. S.; Kobayashi, M. H., On sound propagation in a linear shear flow, J. Sound Vib., 219, 5, 739-770, (1999)
[11] Cavalieri, A. V. G.; Agarwal, A., Coherence decay and its impact on sound radiation by wavepackets, J. Fluid Mech., 748, 399-415, (2014) · Zbl 1416.76272
[12] Cavalieri, A. V. G.; Daviller, G.; Comte, P.; Jordan, P.; Tadmor, G.; Gervais, Y., Using large eddy simulation to explore sound-source mechanisms in jets, J. Sound Vib., 330, 17, 4098-4113, (2011)
[13] Cavalieri, A. V. G.; Jordan, P.; Agarwal, A.; Gervais, Y., Jittering wave-packet models for subsonic jet noise, J. Sound Vib., 330, 18, 4474-4492, (2011)
[14] Cavalieri, A. V. G.; Jordan, P.; Colonius, T.; Gervais, Y., Axisymmetric superdirectivity in subsonic jets, J. Fluid Mech., 704, 388-420, (2012) · Zbl 1246.76005
[15] Cavalieri, A. V. G.; Rodriguez, D.; Jordan, P.; Colonius, T.; Gervais, Y., Wavepackets in the velocity field of turbulent jets, J. Fluid Mech., 730, 559-592, (2013) · Zbl 1291.76280
[16] Cordier, L.; El Majd, B. A.; Favier, J., Calibration of POD reduced-order models using Tikhonov regularization, Intl J. Numer. Meth. Fluids, 63, 2, 269-296, (2010) · Zbl 1425.76181
[17] Cordier, L.; Noack, B. R.; Daviller, G.; Tissot, G.; Lehnasch, G.; Delville, J.; Balajewicz, M.; Niven, R., Identification strategies for model-based control, Exp. Fluids, 54, 8, 1-21, (2013)
[18] Cowley, S. J. & Wu, X.-S.1994Asymptotic approaches to transition modelling. In AGARD, Special Course on Progress in Transition Modelling 38 p (SEE N94-33884 10-34), vol. 1.
[19] Crighton, D. G.; Gaster, M., Stability of slowly diverging jet flow, J. Fluid Mech., 77, 2, 397-413, (1976) · Zbl 0338.76021
[20] Dergham, G.; Sipp, D.; Robinet, J.-C., Stochastic dynamics and model reduction of amplifier flows: the backward facing step flow, J. Fluid Mech., 719, 406-430, (2013) · Zbl 1284.76317
[21] Dobrinsky, A.2002 Adjoint analysis for receptivity prediction. PhD thesis, Rice University, Houston, Texas.
[22] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability, (2004), Cambridge University Press · Zbl 1055.76001
[23] Ffowcs-Williams, J. E.; Kempton, A. J., The noise from the large-scale structure of a jet, J. Fluid Mech., 84, 4, 673-694, (1978)
[24] Freund, J. B.1997 Compressibility effects in a turbulent annular mixing layer. PhD thesis, Stanford University.
[25] Garnaud, X.; Lesshafft, L.; Schmid, P. J.; Huerre, P., The preferred mode of incompressible jets: linear frequency response analysis, J. Fluid Mech., 716, 189-202, (2013) · Zbl 1284.76149
[26] Gloor, M.; Obrist, D.; Kleiser, L., Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow, Phys. Fluids, 25, 8, (2013)
[27] Gudmundsson, K.2010 Instability wave models of turbulent jets from round and serrated nozzles. PhD thesis, California Institute of Technology, Pasadena, California.
[28] Gudmundsson, K.; Colonius, T., Instability wave models for the near field fluctuations of turbulent jets, J. Fluid Mech., 689, 97-128, (2011) · Zbl 1241.76203
[29] Gunzburger, M. D., Perspectives in Flow Control and Optimization, (2003), SIAM · Zbl 1088.93001
[30] Haberman, R., Nonlinear perturbations of the Orr-Sommerfeld equation – asymptotic expansion of the logarithmic phase shift across the critical layer, SIAM J. Math. Anal., 7, 1, 70-81, (1976) · Zbl 0322.76021
[31] Hanifi, A.; Schmid, P. J.; Henningson, D. S., Transient growth in compressible boundary layer flow, Phys. Fluids, 8, 3, 826-837, (1996) · Zbl 1025.76536
[32] Hansen, P. C., Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34, 4, 561-580, (1992) · Zbl 0770.65026
[33] Herbert, T., Parabolized stability equations, Annu. Rev. Fluid Mech., 29, 1, 245-283, (1997)
[34] Huerre, P., The nonlinear stability of a free shear layer in the viscous critical layer regime, Phil. Trans. R. Soc. Lond. A, 293, 1408, 643-672, (1980) · Zbl 0464.76031
[35] Huerre, P.; Scott, J. F., Effects of critical layer structure on the nonlinear evolution of waves in free shear layers, Proc. R. Soc. Lond. A, 371, 1747, 509-524, (1980) · Zbl 0447.76035
[36] Jeun, J.; Nichols, J. W.; Jovanović, M. R., Input – output analysis of high-speed axisymmetric isothermal jet noise, Phys. Fluids, 28, 4, (2016)
[37] Jordan, P.; Colonius, T., Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech., 45, 173-195, (2013) · Zbl 1359.76257
[38] Jordan, P., Colonius, T., Brès, G. A., Zhang, M., Towne, A. & Lele, S. K.2014Modeling intermittent wavepackets and their radiated sound in a turbulent jet. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford University.
[39] Jordan, P.; Gervais, Y., Subsonic jet aeroacoustics: associating experiment, modelling and simulation, Exp. Fluids, 44, 1, 1-21, (2008)
[40] Kerhervé, F.; Jordan, P.; Cavalieri, A. V. G.; Delville, J.; Bogey, C.; Juvé, D., Educing the source mechanism associated with downstream radiation in subsonic jets, J. Fluid Mech., 710, 606-640, (2012) · Zbl 1275.76185
[41] Landahl, M. T., A wave-guide model for turbulent shear flow, J. Fluid Mech., 29, 441-459, (1967) · Zbl 0147.46005
[42] Lesshafft, L., Preface to this Festschrift for Patrick Huerre, Eur. J. Mech. (B/Fluids), 49, 299-300, (2015) · Zbl 1395.00076
[43] Lin, C. C., Some physical aspects of the stability of parallel flows, Proc. Natl Acad. Sci. USA, 40, 8, 741-747, (1954) · Zbl 0056.19001
[44] Maslowe, S. A., Critical layers in shear flows, Annu. Rev. Fluid Mech., 18, 1, 405-432, (1986) · Zbl 0634.76046
[45] Mckeon, B. J.; Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658, 336-382, (2010) · Zbl 1205.76138
[46] Meseguer, Á.; Trefethen, L. N., Linearized pipe flow to Reynolds number 107, J. Comput. Phys., 186, 1, 178-197, (2003) · Zbl 1047.76565
[47] Michalke, A., Survey on jet instability theory, Prog. Aerosp. Sci., 21, 159-199, (1984)
[48] Moarref, R.; Jovanović, M. R.; Tropp, J. A.; Sharma, A. S.; Mckeon, B. J., A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization, Phys. Fluids, 26, 5, (2014)
[49] Navon, I. M.2009Data assimilation for numerical weather prediction: a review. In Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications. Springer.
[50] Nichols, J. & Jovanović, M.2014Input – ouput analysis of high-speed jet noise. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford University.
[51] Nocedal, J.; Wright, St. J., Numerical Optimization, (1999), Springer · Zbl 0930.65067
[52] Papadakis, N.2007 Assimilation de données images: application au suivi de courbes et de champs de vecteurs. PhD thesis, Université de Rennes I.
[53] Poinsot, T. J.; Lele, S. K., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 1, 104-129, (1992) · Zbl 0766.76084
[54] Pralits, J. O.; Airiau, C.; Hanifi, A.; Henningson, D. S., Sensitivity analysis using adjoint parabolized stability equations for compressible flows, Flow Turbul. Combust., 65, 3-4, 321-346, (2000) · Zbl 1094.76513
[55] Pralits, J. O.; Hanifi, A.; Henningson, D. S., Adjoint-based optimization of steady suction for disturbance control in incompressible flows, J. Fluid Mech., 467, 129-161, (2002) · Zbl 1042.76021
[56] Rowley, C. W.; Colonius, T.; Murray, R. M., Model reduction for compressible flows using POD and Galerkin projection, Physica D, 189, 1-2, 115-129, (2004) · Zbl 1098.76602
[57] Sasaki, K.2015 Estudo e controle de pacotes de onda em jatos utilizando as equaões de estabilidade parabolizadas. Master thesis, Instituto Technológico de Aeronáutica, São José dos Campos, Brazil.
[58] Schmid, P. J., Nonmodal stability theory, Annu. Rev. Fluid Mech., 39, 129-162, (2007) · Zbl 1296.76055
[59] Schmid, P. J. & Henningson, D. S.2001Stability and Transition in Shear Flows. vol. 142. Springer. doi:10.1007/978-1-4613-0185-1 · Zbl 0966.76003
[60] Semeraro, O., Jaunet, V., Jordan, P., Cavalieri, A. V. G. & Lesshafft, L.2016 Stochastic and harmonic optimal forcing in subsonic jets. In 22nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-2935.
[61] Sharma, A. S.; Mckeon, B. J., On coherent structure in wall turbulence, J. Fluid Mech., 728, 196-238, (2013) · Zbl 1291.76173
[62] Tissot, G., Zhang, M., Lajús, F. C. Jr., Cavalieri, A. V. G., Jordan, P. & Colonius, T. 2015 Sensitivity of wavepackets in jets to non-linear effects: the role of the critical layer. In 21th AIAA/CEAS Aeroacoustic Conference and Exhibit. 22-26 June, Dallas, Texas, AIAA Paper 2015-2218.
[63] Weideman, J. A.; Reddy, S. C., A Matlab differentiation matrix suite, ACM Trans. Math. Softw., 26, 4, 465-519, (2000)
[64] Zhang, M., Jordan, P., Lehnasch, G., Cavalieri, A. V. G. & Agarwal, A.2014 Just enough jitter for jet noise? In 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, AIAA Paper 2014-3061.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.