×

Swirling flow states in finite-length diverging or contracting circular pipes. (English) Zbl 1383.76111

Summary: The dynamics of inviscid-limit, incompressible and axisymmetric swirling flows in finite-length, diverging or contracting, long circular pipes is studied through global analysis techniques and numerical simulations. The inlet flow is described by the profiles of the circumferential and axial velocity together with a fixed azimuthal vorticity while the outlet flow is characterized by a state with zero radial velocity. A mathematical model that is based on the Squire-Long equation (SLE) is formulated to identify steady-state solutions of the problem with special conditions to describe states with separation zones. The problem is then reduced to the columnar (axially-independent) SLE, with centreline and wall conditions for the solution of the outlet flow streamfunction. The solution of the columnar SLE problem gives rise to the existence of four types of solutions. The SLE problem is then solved numerically using a special procedure to capture states with vortex-breakdown or wall-separation zones. Numerical simulations based on the unsteady vorticity circulation equations are also conducted and show correlation between time-asymptotic states and steady states according to the SLE and the columnar SLE problems. The simulations also shed light on the stability of the various steady states. The uniqueness of steady-state solutions in a certain range of swirl is proven analytically and demonstrated numerically. The computed results provide the bifurcation diagrams of steady states in terms of the incoming swirl ratio and size of pipe divergence or contraction. Critical swirls for the first appearance of the various types of states are identified. The results show that pipe divergence promotes the appearance of vortex-breakdown states at lower levels of the incoming swirl while pipe contraction delays the appearance of vortex breakdown to higher levels of swirl and promotes the formation of wall-separation states.

MSC:

76D17 Viscous vortex flows
76E99 Hydrodynamic stability
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Althaus, W., Bruecker, C. & Weimer, M.1995Breakdown of slender vortices. In Fluid Vortices (ed. Green, S. I.), pp. 373-426. Springer. doi:10.1007/978-94-011-0249-0_9
[2] Ash, R. L. & Khorrami, M. R.1995Vortex stability. In Fluid Vortices (ed. Green, S. I.), chap. 8, pp. 317-372. Springer. doi:10.1007/978-94-011-0249-0_8
[3] Batchelor, G. K.1967An Introduction to Fluid Dynamics, pp. 543-555. Cambridge University Press. · Zbl 0152.44402
[4] Benjamin, T. B., Theory of the vortex breakdown phenomenon, J. Fluid Mech., 14, 4, 593-629, (1962) · Zbl 0112.40705 · doi:10.1017/S0022112062001482
[5] Benjamin, T. B., Some developments in the theory of vortex breakdown, J. Fluid Mech., 28, 1, 65-84, (1967) · Zbl 0149.45102 · doi:10.1017/S0022112067001909
[6] Beran, P. S., The time-asymptotic behavior of vortex breakdown in tubes, Comput. Fluids, 23, 7, 913-937, (1994) · Zbl 0813.76056 · doi:10.1016/0045-7930(94)90061-2
[7] Beran, P. S.; Culick, F. E. C., The role of non-uniqueness in the development of vortex breakdown in tubes, J. Fluid Mech., 242, 491-527, (1992) · Zbl 0825.76135 · doi:10.1017/S0022112092002477
[8] Bossel, H. H., Vortex breakdown flowfield, Phys. Fluids, 12, 3, 498-508, (1969) · Zbl 0202.26403 · doi:10.1063/1.1692512
[9] Bragg, S. L.; Hawthorne, W. R., Some exact solutions of the flow through annular cascade actuator discs, J. Aero. Sci., 17, 243-249, (1950) · doi:10.2514/8.1597
[10] Brown, G. L.; Lopez, J. M., Axisymmetric vortex breakdown Part 2. Physical mechanisms, J. Fluid Mech., 221, 553-576, (1990) · Zbl 0715.76097 · doi:10.1017/S0022112090003676
[11] Buntine, J. D.; Saffman, P. G., Inviscid swirling flows and vortex breakdown, Proc. R. Soc. Lond. A, 449, 1935, 139-153, (1995) · Zbl 0824.76015 · doi:10.1098/rspa.1995.0036
[12] Delery, J. M., Aspects of vortex breakdown, Prog. Aerosp. Sci., 30, 1, 1-59, (1994) · doi:10.1016/0376-0421(94)90002-7
[13] Dennis, D. J. C.; Seraudie, C.; Poole, R. J., Controlling vortex breakdown in swirling pipe flows: experiments and simulations, Phys. Fluids, 26, 5, (2014) · doi:10.1063/1.4875486
[14] Escudier, M., Vortex breakdown: observations and explanations, Prog. Aerosp. Sci., 25, 2, 189-229, (1988) · doi:10.1016/0376-0421(88)90007-3
[15] Escudier, M. P.; Keller, J. J., 1983 Vortex breakdown: a two stage transition, AGARD CP, 342, 251-258
[16] Faler, J. H.; Leibovich, S., Disrupted states of vortex flow and vortex breakdown, Phys. Fluids, 20, 9, 1385-1400, (1977) · doi:10.1063/1.862033
[17] Gallaire, F.; Chomaz, J. M., Mode selection in swirling jet experiments: a linear stability analysis, J. Fluid Mech., 494, 223-253, (2003) · Zbl 1078.76033 · doi:10.1017/S0022112003006104
[18] Gallaire, F.; Chomaz, J.-M., The role of boundary conditions in a simple model of incipient vortex breakdown, Phys. Fluids, 16, 2, 274-286, (2004) · Zbl 1186.76188 · doi:10.1063/1.1630326
[19] Gallaire, F.; Ruith, M.; Meiburg, E.; Chomaz, J. M.; Huerre, P., Spiral vortex breakdown as a global mode, J. Fluid Mech., 549, 71-80, (2006) · doi:10.1017/S0022112005007834
[20] Garg, A. K.; Leibovich, S., Spectral characteristics of vortex breakdown flowfields, Phys. Fluid, 22, 11, 2053-2064, (1979) · doi:10.1063/1.862514
[21] Grimshaw, R.; Yi, Z., Resonant generation of finite-amplitude waves by the uniform flow of a uniformly rotating fluid past an obstacle, Mathematika, 40, 1, 30-50, (1993) · Zbl 0781.76093 · doi:10.1112/S002557930001370X
[22] Hall, M. G., Vortex breakdown, Annu. Rev. Fluid Mech., 4, 1, 195-218, (1972) · Zbl 0243.76028 · doi:10.1146/annurev.fl.04.010172.001211
[23] Hanazaki, H., On the wave excitation and the formation of recirculation eddies in an axisymmetric flow of uniformly rotating fluids, J. Fluid Mech., 322, 165-200, (1996) · Zbl 0897.76092 · doi:10.1017/S0022112096002753
[24] Howard, L. N.; Gupta, A. S., On the hydrodynamics and hydromagnetic stability of swirling flows, J. Fluid Mech., 14, 3, 463-476, (1962) · Zbl 0116.19002 · doi:10.1017/S0022112062001366
[25] Keller, J. J.; Egli, W.; Exley, J., Force- and loss-free transitions between flow states, Z. Angew. Math. Phys., 36, 6, 854-889, (1985) · Zbl 0592.76094 · doi:10.1007/BF00944899
[26] Kelvin, Lord, Vibrations of a columnar vortex, Phil. Mag., 10, 155-168, (1880) · JFM 12.0698.01 · doi:10.1080/14786448008626912
[27] Lavan, Z.; Nielsen, H.; Fejer, A. A., Separation and flow reversal in swirling flows in circular ducts, Phys. Fluids, 12, 9, 1747-1757, (1969) · Zbl 0193.26204 · doi:10.1063/1.1692738
[28] Leclaire, B.; Sipp, D.; Jacquin, L., Near-critical swirling flow in a contracting duct: The case of plug axial flow with solid-body rotation, Phys. Fluids, 19, 9, (2007) · Zbl 1182.76434 · doi:10.1063/1.2773767
[29] Leclaire, B.; Sipp, D., A sensitivity study of vortex breakdown onset to upstream boundary conditions, J. Fluid Mech., 645, 81-119, (2010) · Zbl 1189.76103 · doi:10.1017/S0022112009992436
[30] Leibovich, S., Vortex stability and breakdown: survey and extension, AIAA J., 22, 9, 1192-1206, (1984) · doi:10.2514/3.8761
[31] Leibovich, S.; Kribus, A., Large amplitude wavetrains and solitary waves in vortices, J. Fluid Mech., 216, 459-504, (1990) · Zbl 0698.76025 · doi:10.1017/S0022112090000507
[32] Leibovich, S.; Stewartson, K., A sufficient condition for the instability of columnar vortices, J. Fluid Mech., 126, 335-356, (1983) · Zbl 0519.76022 · doi:10.1017/S0022112083000191
[33] Lessen, M.; Singh, P. J.; Paillet, F., The stability of a trailing line vortex. Part 1. Inviscid theory, J. Fluid Mech., 63, 4, 753-763, (1974) · Zbl 0277.76041 · doi:10.1017/S0022112074002175
[34] Liang, H.; Maxworthy, T., An experimental investigation of swirling jets, J. Fluid Mech., 525, 115-159, (2005) · Zbl 1065.76005 · doi:10.1017/S0022112004002629
[35] Long, R. R., Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid, J. Met., 10, 3, 197-203, (1953) · doi:10.1175/1520-0469(1953)010<0197:SMAASO>2.0.CO;2
[36] Lopez, J. M., On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe, Phys. Fluids, 6, 11, 3683-3693, (1994) · Zbl 0825.76201 · doi:10.1063/1.868359
[37] Mattner, T. W.; Joubert, P. N.; Chong, M. S., Vortical flow. Part 1: flow through a constant diameter pipe, J. Fluid Mech., 463, 259-291, (2002) · Zbl 1013.76500
[38] Mclelland, G.; Macmanus, D.; Sheaf, C., The effect of streamtube contraction on the characteristics of a streamwise vortex, Trans. ASME J. Fluids Engng, 137, 6, (2015) · doi:10.1115/1.4029661
[39] Meliga, P.; Gallaire, F.; Chomaz, J. M., A weakly nonlinear mechanism for mode selection in swirling jets, J. Fluid Mech., 699, 216-262, (2012) · Zbl 1248.76071 · doi:10.1017/jfm.2012.93
[40] Mitchell, A. M.; Delery, J., Research into vortex breakdown control, Prog. Aerosp. Sci., 37, 4, 385-418, (2001) · doi:10.1016/S0376-0421(01)00010-0
[41] Novak, F.; Sarpkaya, T., Turbulent vortex breakdown at high Reynolds numbers, AIAA J., 38, 5, 825-834, (2000) · doi:10.2514/2.1036
[42] Qadri, U. A.; Mistry, D.; Juniper, M. P., Structural sensitivity of spiral vortex breakdown, J. Fluid Mech., 720, 558-581, (2013) · Zbl 1284.76151 · doi:10.1017/jfm.2013.34
[43] Randall, J. D.; Leibovich, S., The critical state: a trapped wave model of vortex breakdown, J. Fluid Mech., 58, 3, 495-515, (1973) · Zbl 0265.76026 · doi:10.1017/S0022112073002296
[44] Rayleigh, Lord, On the dynamics of revolving fluids, Proc. R. Soc. Lond. A, 93, 648, 148-154, (1916) · JFM 46.1397.04 · doi:10.1098/rspa.1917.0010
[45] Ruith, M. R.; Chen, P.; Meiburg, E.; Maxworthy, T., Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation, J. Fluid Mech., 486, 331-378, (2003) · Zbl 1080.76024 · doi:10.1017/S0022112003004749
[46] Rusak, Z., Axisymmetric swirling flow around a vortex breakdown point, J. Fluid Mech., 323, 79-105, (1996) · Zbl 0896.76011 · doi:10.1017/S0022112096000857
[47] Rusak, Z., The interaction of near-critical swirling flows in a pipe with inlet azimuthal vorticity perturbations, Phys. Fluids, 10, 7, 1672-1684, (1998) · Zbl 1185.76643 · doi:10.1063/1.869685
[48] Rusak, Z.; Judd, K. P., The stability of non-columnar swirling flows in diverging streamtubes, Phys. Fluids, 13, 10, 2835-2844, (2001) · Zbl 1184.76466 · doi:10.1063/1.1398043
[49] Rusak, Z.; Meder, C., Near-critical swirling flow in a slightly contracting pipe, AIAA J., 42, 11, 2284-2293, (2004) · doi:10.2514/1.7850
[50] Rusak, Z.; Wang, S., Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating finite-length straight circular pipe, J. Fluid Mech., 759, 321-359, (2014) · Zbl 1446.76088 · doi:10.1017/jfm.2014.555
[51] Rusak, Z.; Wang, S.; Xu, L.; Taylor, S., On the global nonlinear stability of near-critical swirling flows in a long finite-length pipe and the path to vortex breakdown, J. Fluid Mech., 712, 295-326, (2012) · Zbl 1275.76114 · doi:10.1017/jfm.2012.420
[52] Rusak, Z.; Whiting, C. H.; Wang, S., Axisymmetric breakdown of a Q-vortex in a pipe, AIAA J., 36, 10, 1848-1853, (1998) · Zbl 0924.76019 · doi:10.2514/2.277
[53] Sarpkaya, T., On stationary and traveling vortex breakdowns, J. Fluid Mech., 45, 3, 545-559, (1971) · doi:10.1017/S0022112071000181
[54] Sarpkaya, T., Effect of adverse pressure-gradient on vortex breakdown, AIAA J., 12, 5, 602-607, (1974) · doi:10.2514/3.49305
[55] Sarpkaya, T., Turbulent vortex breakdown, Phys. Fluids, 7, 10, 2301-2303, (1995) · doi:10.1063/1.868742
[56] Snyder, D. O.; Spall, R. E., Numerical simulation of bubble-type vortex breakdown within a tube-and-vane apparatus, Phys. Fluids, 12, 3, 603-608, (2000) · Zbl 1149.76544 · doi:10.1063/1.870266
[57] Squire, H. B.1956Rotating fluids. In Surveys in Mechanics (ed. Batchelor, G. K. & Davies, R. M.), pp. 139-161. Cambridge University Press.
[58] Squire, H. B.1960Analysis of the vortex breakdown phenomenon. In Miszallaneen der Angewandten Mechanik, pp. 306-312. Akademie.
[59] Synge, L., The stability of heterogeneous liquids, Trans. R. Soc. Can., 27, 1-18, (1933) · JFM 59.1453.01
[60] Tammisola, O.; Juniper, M. P., Coherent structures in a swirl injector at Re = 4800 by nonlinear simulations and linear global modes, J. Fluid Mech., 792, 620-657, (2016) · Zbl 1381.76078 · doi:10.1017/jfm.2016.86
[61] Umeh, C. O. U.; Rusak, Z.; Gutmark, E.; Villalva, R.; Cha, D. J., Experimental and computational study of nonreacting vortex breakdown in a swirl-stabilized combustor, AIAA J., 48, 11, 2576-2585, (2010) · doi:10.2514/1.J050393
[62] Wang, S.; Rusak, Z., On the stability of an axisymmetric rotating flow in a pipe, Phys. Fluids, 8, 4, 1007-1016, (1996) · Zbl 1025.76523 · doi:10.1063/1.868882
[63] Wang, S.; Rusak, Z., The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown, J. Fluid Mech., 340, 177-223, (1997) · Zbl 0894.76014 · doi:10.1017/S0022112097005272
[64] Wang, S.; Rusak, Z., The effect of slight viscosity on a near-critical swirling flow in a pipe, Phys. Fluids, 9, 7, 1914-1927, (1997) · Zbl 1185.76569 · doi:10.1063/1.869312
[65] Wang, S.; Rusak, Z., Energy transfer mechanism of the instability of an axisymmetric swirling flow in a finite-length pipe, J. Fluid Mech., 679, 505-543, (2011) · Zbl 1241.76243 · doi:10.1017/jfm.2011.143
[66] Wang, S.; Rusak, Z.; Gong, R.; Liu, F., On the three-dimensional stability of a solid-body rotation flow in a finite-length rotating pipe, J. Fluid Mech., 797, 284-321, (2016) · Zbl 1422.76065 · doi:10.1017/jfm.2016.223
[67] Xu, L.2012 Vortex flow stability, dynamics and feedback stabilization. PhD dissertation, Rensselaer Polytechnic Institute.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.