A settling-driven instability in two-component, stably stratified fluids. (English) Zbl 1383.76074

Summary: We analyse the linear stability of stably stratified fluids whose density depends on two scalar fields where one of the scalar fields is unstably stratified and involves a settling velocity. Such conditions may be found, for example, in flows involving the transport of sediment in addition to heat or salt. A linear stability analysis for constant-gradient base states demonstrates that the settling velocity generates a phase shift between the perturbation fields of the two scalars, which gives rise to a novel, settling-driven instability mode. This instability mechanism favours the growth of waves that are inclined with respect to the horizontal. It is active for all density and diffusivity ratios, including for cases in which the two scalars diffuse at identical rates. If the scalars have unequal diffusivities, it competes with the elevator mode waves of the classical double-diffusive instability. We present detailed linear stability results as a function of the governing dimensionless parameters, including for lateral gradients of the base state density fields that result in predominantly horizontal intrusion instabilities. Highly resolved direct numerical simulation results serve to illustrate the nonlinear competition of the various instabilities for such flows in different parameter regimes.


76D05 Navier-Stokes equations for incompressible viscous fluids
76D50 Stratification effects in viscous fluids
76R10 Free convection
76F65 Direct numerical and large eddy simulation of turbulence
76T20 Suspensions
Full Text: DOI Link


[1] Alldredge, A.; Cohen, Y., Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235, 4789, 689-691, (1987)
[2] Baines, P. G.; Gill, A. E., On thermohaline convection with linear gradients, J. Fluid Mech., 37, 289-306, (1969)
[3] Burns, P.; Meiburg, E., Sediment-laden fresh water above salt water: linear stability analysis, J. Fluid Mech., 691, 279-314, (2012) · Zbl 1241.76223
[4] Burns, P.; Meiburg, E., Sediment-laden fresh water above salt water: nonlinear simulations, J. Fluid Mech., 762, 156-195, (2015) · Zbl 1241.76223
[5] Carazzo, G.; Jellinek, A. M., Particle sedimentation and diffusive convection in volcanic ash-clouds, J. Geophys. Res., 118, 4, 1420-1437, (2013)
[6] Carey, S., Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea, Geology, 25, 9, 839-842, (1997)
[7] Chen, C. F., Particle flux through sediment fingers, Deep-Sea Res. I, 44, 9, 1645-1654, (1997)
[8] Davarpanah, J. S.; Wells, M. G., Enhanced sedimentation beneath particle-laden flows in lakes and the ocean due to double-diffusive convection, Geophys. Res. Lett., 43, 20, 10883-10890, (2016)
[9] Green, T., The importance of double diffusion to the settling of suspended material, Sedimentology, 34, 2, 319-331, (1987)
[10] Green, T.; Diez, T., Vertical plankton transport due to self-induced convection, J. Plankton Res., 17, 9, 1723-1730, (1995)
[11] Holyer, J. Y., Double-diffusive interleaving due to horizontal gradients, J. Fluid Mech., 137, 347-362, (1983) · Zbl 0566.76031
[12] Hoyal, D.; Bursik, M.; Atkinson, J., The influence of diffusive convection on sedimentation from buoyant plumes, Mar. Geol., 159, 1, 205-220, (1999)
[13] Hoyal, D.; Bursik, M.; Atkinson, J., Settling-driven convection: a mechanism of sedimentation from stratified fluids, J. Geophys. Res., 104, C4, 7953-7966, (1999)
[14] Lampitt, R.; Achterberg, E.; Anderson, T.; Hughes, J. A.; Iglesias-Rodriguez, M. D.; Kelly-Gerreyn, B. A.; Lucas, M.; Popova, E. E.; Sanders, R.; Shepherd, J. G., Ocean fertilization: a potential means of geoengineering?, Phil. Trans. R. Soc. Lond. A, 366, 1882, 3919-3945, (2008)
[15] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 1, 16-42, (1992) · Zbl 0759.65006
[16] Manville, V.; Wilson, C. J. N., Vertical density currents: a review of their potential role in the deposition and interpretation of deep-sea ash layers, J. Geol. Soc., 161, 6, 947-958, (2004)
[17] Manzella, I.; Bonadonna, C.; Phillips, J. C.; Monnard, H., The role of gravitational instabilities in deposition of volcanic ash, Geology, 43, 3, 211-214, (2015)
[18] Maxworthy, T., The dynamics of sedimenting surface gravity currents, J. Fluid Mech., 392, 27-44, (1999) · Zbl 0938.76517
[19] Medrano, M.; Garaud, P.; Stellmach, S., Double-diffusive mixing in stellar interiors in the presence of horizontal gradients, Astrophys. J. Lett., 792, 2, L30, (2014)
[20] Parsons, J.; Bush, J.; Syvitski, J., Hyperpycnal plume formation from riverine outflows with small sediment concentrations, Sedimentology, 48, 2, 465-478, (2001)
[21] Parsons, J.; García, M., Enhanced sediment scavenging due to double-diffusive convection, Intl J. Sedim. Res., 70, 1, 47-52, (2000)
[22] Radko, T., Double-diffusive Convection, (2013), Cambridge University Press · Zbl 1301.76001
[23] Reali, J. F.; Garaud, P.; Alsinan, A.; Meiburg, E., Layer formation in sedimentary fingering convection, J. Fluid Mech., 816, 268-305, (2017) · Zbl 1383.76506
[24] Rouhnia, M.; Strom, K., Sedimentation from flocculated suspensions in the presence of settling-driven gravitational interface instabilities, J. Geophys. Res., 120, 9, 6384-6404, (2015)
[25] Ruddick, B. R.; Turner, J. S., The vertical length scale of double-diffusive intrusions, Deep-Sea Res. A, 26, 8, 903-913, (1979)
[26] Sánchez, X.; Roget, E., Microstructure measurements and heat flux calculations of a triple-diffusive process in a lake within the diffusive layer convection regime, J. Geophys. Res., 112, C2, (2007)
[27] Scheu, K. R.; Fong, D. A.; Monismith, S. G.; Fringer, O. B., Sediment transport dynamics near a river inflow in a large alpine lake, Limnol. Oceanogr., 60, 4, 1195-1211, (2015)
[28] Schulte, B.; Konopliv, N.; Meiburg, E., Clear salt water above sediment-laden fresh water: Interfacial instabilities, Phys. Rev. Fluids, 1, 1, (2016)
[29] Segre, P. N.; Liu, F.; Umbanhowar, P.; Weitz, D. A., An effective gravitational temperature for sedimentation, Nature (London), 409, 594, (2001)
[30] Stern, M. E., The salt-fountain and thermohaline convection, Tellus, 12, 2, 172-175, (1960)
[31] Stern, M. E.1967Lateral mixing of water masses. In Deep Sea Research and Oceanographic Abstracts, vol. 14, pp. 747-753. Elsevier. · Zbl 0283.90080
[32] Turner, J. S., Buoyancy Effects in Fluids, (1979), Cambridge University Press · Zbl 0443.76091
[33] Turner, J. S., Multicomponent convection, Annu. Rev. Fluid Mech., 17, 1, 11-44, (1985)
[34] Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 1, 48-56, (1980) · Zbl 0425.65038
[35] Yu, X.; Hsu, T.; Balachandar, S., Convective instability in sedimentation: linear stability analysis, J. Geophys. Res., 118, 1, 256-272, (2013)
[36] Yu, X.; Hsu, T.; Balachandar, S., Convective instability in sedimentation: 3-d numerical study, J. Geophys. Res., 119, 11, 8141-8161, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.