×

The characteristics of billows generated by internal solitary waves. (English) Zbl 1383.76046

Summary: The spatial and temporal development of shear-induced overturning billows associated with breaking internal solitary waves is studied by means of a combined laboratory and numerical investigation. The waves are generated in the laboratory by a lock exchange mechanism and they are simulated numerically via a contour-advective semi-Lagrangian method. The properties of individual billows (maximum height attained, time of collapse, growth rate, speed, wavelength, Thorpe scale) are determined in each case, and the billow interaction processes are studied and classified. For broad flat waves, similar characteristics are seen to those in parallel shear flow, but, for waves not at the conjugate flow limit, billow characteristics are affected by the spatially varying wave-induced shear flow. Wave steepness and wave amplitude are shown to have a crucial influence on determining the type of interaction that occurs between billows and whether billow overturning can be arrested. Examples are given in which billows (i) evolve independently of one another, (ii) pair with one another, (iii) engulf/entrain one another and (iv) fail to completely overturn. It is shown that the vertical extent a billow can attain (and the associated Thorpe scale of the billow) is dependent on wave amplitude but that its value saturates once a given amplitude is reached. It is interesting to note that this amplitude is less than the conjugate flow limit amplitude. The number of billows that form on a wave is shown to be dependent on wavelength; shorter waves support fewer but larger billows than their long-wave counterparts for a given stratification.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76E20 Stability and instability of geophysical and astrophysical flows
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alford, M. H., Gregg, M. C. & Merrifield, M. A.2006Structure, propagation and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr.36 (6), 997-1018.10.1175/JPO2877.1 · doi:10.1175/JPO2877.1
[2] Almgren, A., Camassa, R. & Tiron, R.2012Shear instability of internal solitary waves in Euler fluids with thin pycnoclines. J. Fluid Mech.710, 324-361.10.1017/jfm.2012.366S0022112012003667 · Zbl 1275.76100 · doi:10.1017/jfm.2012.366
[3] Barad, M. F. & Fringer, O. B.2010Simulations of shear instabilities in interfacial gravity waves. J. Fluid Mech.644, 61-95.10.1017/S0022112009992035S0022112009992035 · Zbl 1189.76225 · doi:10.1017/S0022112009992035
[4] Carpenter, J. R., Lawrence, G. A. & Smyth, W. D.2007Evolution and mixing of asymmetric Holmboe instabilities. J. Fluid Mech.582, 103-132.10.1017/S0022112007005988S0022112007005988 · Zbl 1114.76026 · doi:10.1017/S0022112007005988
[5] Carr, M., King, S. E. & Dritschel, D. G.2011Numerical simulation of shear-induced instabilities in internal solitary waves. J. Fluid Mech.683, 263-288.10.1017/jfm.2011.261S0022112011002618 · Zbl 1241.76100 · doi:10.1017/jfm.2011.261
[6] Caulfield, C. P., Yoshida, S. & Peltier, W. R.1996Secondary instability and three-dimensionalization in a laboratory accelerating shear layer with varying density differences. Dyn. Atmos. Oceans23, 125-138.10.1016/0377-0265(95)00418-1 · doi:10.1016/0377-0265(95)00418-1
[7] Dalziel, S. B., Carr, M., Sveen, J. K. & Davies, P. A.2007Simultaneous synthetic schlieren and PIV measurements for internal solitary waves. Meas. Sci. Technol.18, 533-547.10.1088/0957-0233/18/3/001 · doi:10.1088/0957-0233/18/3/001
[8] De Silva, I. P. D., Fernando, H. J. S., Eaton, F. & Hebert, D.1996Evolution of Kelvin-Helmholtz billows in nature and laboratory. Earth Planet. Sci. Lett.143, 217-231.10.1016/0012-821X(96)00129-X · doi:10.1016/0012-821X(96)00129-X
[9] Diamessis, P. J. & Nomura, K. K.2004The structure and dynamics of overturns in stably stratified homogeneous turbulence. J. Fluid Mech.499, 197-229.10.1017/S0022112003006992S0022112003006992 · Zbl 1163.76379 · doi:10.1017/S0022112003006992
[10] Dillon, T. M.1982Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res.87 (C12), 9601-9613.10.1029/JC087iC12p09601 · doi:10.1029/JC087iC12p09601
[11] Dritschel, D. G. & Ambaum, M. H. P.1997A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields. Q. J. R. Meteorol. Soc.123, 1097-1130.10.1002/qj.49712354015 · doi:10.1002/qj.49712354015
[12] Dritschel, D. G. & Fontane, J.2010The combined Lagrangian advection method. J. Comput. Phys.229, 5408-5417.10.1016/j.jcp.2010.03.048 · Zbl 1310.76124 · doi:10.1016/j.jcp.2010.03.048
[13] Egbert, G. & Ray, R.2000Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature405, 775-778.10.1038/35015531 · doi:10.1038/35015531
[14] Fructus, D., Carr, M., Grue, J., Jensen, A. & Davies, P. A.2009Shear-induced breaking of large internal solitary waves. J. Fluid Mech.620, 1-29.10.1017/S0022112008004898S0022112008004898 · Zbl 1156.76313 · doi:10.1017/S0022112008004898
[15] Fukao, S., Luce, H., Megac, T. & Yamamoto, M. K.2011Extensive studies of large-amplitude Kelvin-Helmholtz billows in the lower atmosphere with VHF middle and upper atmosphere radar. Q. J. R. Meteorol. Soc.137, 1019-1041.10.1002/qj.807 · doi:10.1002/qj.807
[16] Geyer, W. R., Lavery, A. C., Scully, M. E. & Trowbridge, J. H.2010Mixing by shear instability at high Reynolds number. Geophys. Res. Lett.37, L22607.10.1029/2010GL045272 · doi:10.1029/2010GL045272
[17] Grue, J., Jensen, A., Rusås, P. O. & Sveen, J. K.1999Properties of large-amplitude internal waves. J. Fluid Mech.380, 257-278.10.1017/S0022112098003528S0022112098003528 · Zbl 0938.76512 · doi:10.1017/S0022112098003528
[18] Grue, J., Jensen, A., Rusås, P. O. & Sveen, J. K.2000Breaking and broadening of internal solitary waves. J. Fluid Mech.413, 181-217.10.1017/S0022112000008648S0022112000008648 · Zbl 0979.76013 · doi:10.1017/S0022112000008648
[19] van Haren, H. & Gostiaux, L.2010A deep-ocean Kelvin-Helmholtz billow train. Geophys. Res. Lett.37, L030605.
[20] van Haren, H. & Gostiaux, L.2014Characterizing turbulent overturns in CTD data. Dyn. Atmos. Oceans66, 58-76.10.1016/j.dynatmoce.2014.02.001 · doi:10.1016/j.dynatmoce.2014.02.001
[21] Hazel, P.1972Numerical studies of the stability of inviscid stratified shear flow. J. Fluid Mech.51 (1), 39-61.10.1017/S0022112072001065 · Zbl 0239.76112 · doi:10.1017/S0022112072001065
[22] Helfrich, K. R. & Melville, W. K.2006Long nonlinear internal waves. Annu. Rev. Fluid Mech.38, 395-425.10.1146/annurev.fluid.38.050304.092129 · Zbl 1098.76018 · doi:10.1146/annurev.fluid.38.050304.092129
[23] Helmholtz, P.1868On discontinuous movements of fluids. Phil. Mag.36 (244), 337-346.
[24] Keller, K. H. & van Atta, C. W.2000An experimental investigation of the vertical temperature structure of homogeneous stratified shear turbulence. J. Fluid Mech.425, 1-29.10.1017/S0022112000002111S0022112000002111 · Zbl 0961.76506 · doi:10.1017/S0022112000002111
[25] Kelvin, Lord1871Hydrokinetic solutions and observations. Phil. Mag.10, 155-168.
[26] King, S. E., Carr, M. & Dritschel, D. G.2010The steady state form of large amplitude internal solitary waves. J. Fluid Mech.666, 477-505.10.1017/S0022112010004301 · Zbl 1225.76061 · doi:10.1017/S0022112010004301
[27] Koop, C. G. & Browand, F. K.1979Instability and turbulence in a stratified fluid with shear. J. Fluid Mech.93, 135-159.10.1017/S0022112079001828 · doi:10.1017/S0022112079001828
[28] Lamb, K. G.2014Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech.46, 231-254.10.1146/annurev-fluid-011212-140701 · Zbl 1297.76043 · doi:10.1146/annurev-fluid-011212-140701
[29] Lamb, K. G. & Farmer, D.2011Instabilities in an internal solitary-like wave on the Oregon Shelf. J. Phys. Oceanogr.41, 67-87.10.1175/2010JPO4308.1 · doi:10.1175/2010JPO4308.1
[30] Lamb, K. G. & Wan, B.1998Conjugate flows and flat solitary waves for a continuously stratified fluid. Phys. Fluids10 (8), 2061-2079.10.1063/1.869721 · Zbl 1185.76913 · doi:10.1063/1.869721
[31] Legg, S.2009Improving oceanic overflow representation in climate models: the gravity current entrainment climate process team. Bull. Am. Meteorol. Soc.90, 657-670.10.1175/2008BAMS2667.1 · doi:10.1175/2008BAMS2667.1
[32] Lien, R.-C., Henyey, F. & Ma, B.2014Large-amplitude internal solitary waves observed in the Northern South China sea: properties and energetics. J. Phys. Oceanogr.44, 1095-1115.10.1175/JPO-D-13-088.1 · doi:10.1175/JPO-D-13-088.1
[33] Luce, H., Mega, T., Yamamoto, M. K., Yamamoto, M., Hashiguchi, H., Fukao, S., Nishi, N., Tajiri, T. & Nakazato, M.2010Observations of Kelvin-Helmholtz instability at a cloud base with the middle and upper atmosphere (MU) and weather radars. J. Geophys. Res.115, D19116.10.1029/2009JD013519 · doi:10.1029/2009JD013519
[34] MacKinnon, J. A. & Gregg, M. C.2005Spring mixing: turbulence and internal waves during restratification on the New England shelf. J. Phys. Oceanogr.35 (12), 2425-2443.10.1175/JPO2821.1 · doi:10.1175/JPO2821.1
[35] Mashayek, A. & Peltier, W. R.2011Three-dimensionalization of the stratified mixing layer at high Reynolds number. Phys. Fluids23, 111701.10.1063/1.3651269 · doi:10.1063/1.3651269
[36] Mater, B. D., Schaad, S. M. & Venayagamoorthy, S. K.2013Relevance of the Thorpe length scale in stably stratified turbulence. Phys. Fluids25, 076604.10.1063/1.4813809 · doi:10.1063/1.4813809
[37] Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L. & Vagle, S.2003Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr.33, 2093-2112.10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2 · doi:10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2
[38] Munro, R. J. & Davies, P. A.2009The flow generated in a continuously stratified rotating fluid by the differential rotation of a plane horizontal disc. Fluid Dyn. Res.38 (8), 522-538.10.1016/j.fluiddyn.2006.03.002 · Zbl 1178.76040 · doi:10.1016/j.fluiddyn.2006.03.002
[39] Ostrovsky, L. A. & Grue, J.2003Evolution equations for strongly nonlinear internal waves. Phys. Fluids15, 2934-2948.10.1063/1.1604133 · Zbl 1186.76407 · doi:10.1063/1.1604133
[40] Pawlak, G. & Armi, L.1998Vortex dynamics in a spatially accelerating shear layer. J. Fluid Mech.376, 1-35.10.1017/S002211209800250XS002211209800250X · Zbl 0941.76524 · doi:10.1017/S002211209800250X
[41] Peltier, W. R. & Caulfield, C. P.2003Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech.35, 135-167.10.1146/annurev.fluid.35.101101.161144 · Zbl 1041.76024 · doi:10.1146/annurev.fluid.35.101101.161144
[42] Shroyer, E. L., Moum, J. N. & Nash, J. D.2011Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res.116, C03022.10.1029/2010JC006332 · doi:10.1029/2010JC006332
[43] Smyth, W. D. & Moum, J. N.2012Ocean mixing by Kelvin-Helmholtz instability. Oceanography25 (2), 140-149.10.5670/oceanog.2012.49 · doi:10.5670/oceanog.2012.49
[44] Smyth, W. D., Moum, J. N. & Caldwell, D. R.2001The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr.31, 1969-1992.10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2 · doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2
[45] Thorpe, S. A.1973Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech.61, 731-751.10.1017/S0022112073000911S0022112073000911 · doi:10.1017/S0022112073000911
[46] Thorpe, S. A.1977Turbulence and mixing in a Scottish loch. Phil. Trans. R. Soc. Lond. A286 (1334), 125-181.10.1098/rsta.1977.0112 · doi:10.1098/rsta.1977.0112
[47] Thorpe, S. A.2004Recent developments in the study of ocean turbulence. Annu. Rev. Earth Planet. Sci.32, 91-109.10.1146/annurev.earth.32.071603.152635 · doi:10.1146/annurev.earth.32.071603.152635
[48] Vlasenko, V., Stashchuk, N. & Hutter, K.2005Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press.10.1017/CBO9780511535932 · Zbl 1260.76002 · doi:10.1017/CBO9780511535932
[49] Zhang, S. & Alford, M. H.2015Instabilities in nonlinear internal waves on the Washington continental shelf. J. Geophys. Res. Oceans120, 5272-5283.10.1002/2014JC010638 · doi:10.1002/2014JC010638
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.