zbMATH — the first resource for mathematics

Shot-noise processes in finance. (English) Zbl 1383.62253
Ferger, Dietmar (ed.) et al., From statistics to mathematical finance. Festschrift in honour of Winfried Stute. Cham: Springer (ISBN 978-3-319-50985-3/hbk; 978-3-319-50986-0/ebook). 367-385 (2017).
Summary: Shot-Noise processes constitute a useful tool in various areas, in particular in finance. They allow to model abrupt changes in a more flexible way than processes with jumps and hence are an ideal tool for modelling stock prices, credit portfolio risk, systemic risk, or electricity markets. Here we consider a general formulation of shot-noise processes, in particular time-inhomogeneous shot-noise processes. This flexible class allows to obtain the Fourier transforms in explicit form and is highly tractable. We prove that Markovianity is equivalent to exponential decay of the noise function. Moreover, we study the relation to semimartingales and equivalent measure changes which are essential for the financial application. In particular we derive a drift condition which guarantees absence of arbitrage. Examples include the minimal martingale measure and the Esscher measure.
For the entire collection see [Zbl 1383.62010].

MSC:
 62P05 Applications of statistics to actuarial sciences and financial mathematics 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) 60G57 Random measures
Keywords:
shot-noise processes
Full Text:
References:
 [1] Albrecher, H. and Asmussen, S. (2006), ‘Ruin probabilities and aggregate claims distributions for shot noise Cox processes’, $$Scandinavian Actuarial Journal$$ (2), 86-110. · Zbl 1129.91022 [2] Altmann, T., Schmidt, T. and Stute, W. (2008), ‘A shot noise model for financial assets’, $$International Journal of Theoretical and Applied Finance$$ 11 (1), 87-106. · Zbl 1153.91452 [3] Bassan, B. and Bona, E. (1988), Shot noise random fields, $$in$$ ‘Biomathematics and related computational problems (Naples, 1987)’, Kluwer Acad. Publ., Dordrecht, pp. 423-427. [4] Bielecki, T. R., Jeanblanc, M. and Rutkowski, M. (2000), Modeling default risk: Mathematical tools, $$in$$ ‘Fixed Income and Credit risk modeling and Management’, New York University, Stern School of Business, Statistics and Operations Research Department, workshop, pp. 171-269. [5] Björk, T., Kabanov, Y. and Rungaldier, W. (1997), ‘Bond market structure in the presence of marked point processes’, $$Mathematical Finance$$ 7 , 211-239. [6] Bondesson, L. (2004), $$Shot-Noise Processes and Distributions$$ , John Wiley & Sons, Inc. [7] Brémaud, P. (1981), $$Point Processes and Queues$$ , Springer Verlag. Berlin Heidelberg New York. [8] Campbell, N. (1909a), ‘Discontinuities in light emission’, $$Proc. Cumbr. Phil. Sot.$$ 15 , 310-328. · JFM 41.0928.05 [9] Campbell, N. (1909b), ‘The study of discontinuous phenomena’, $$Proc. Cumbr. Phil. Sot.$$ 15 , 117-136. [10] Chobanov, G. (1999), ‘Modeling financial asset returns with shot noise processes’, $$Mathematical and Computer Modelling$$ 29 (10), 17-21. · Zbl 0992.91041 [11] Cont, R. and Tankov, P. (2004), $$Financial Modelling with Jump Processes$$ , Chapman & Hall. · Zbl 1052.91043 [12] Dassios, A. and Jang, J. (2003), ‘Pricing of catastrophe reinsurance & derivatives using the Cox process with shot noise intensity’, $$Finance and Stochastics$$ 7 (1), 73-95. · Zbl 1039.91038 [13] Errais, E., Giesecke, K. and Goldberg, L. R. (2010), ‘Affine point processes and portfolio credit risk’, $$SIAM Journal on Financial Mathematics$$ 1 , 642-665. · Zbl 1200.91296 [14] Esche, F. and Schweizer, M. (2005), ‘Minimal entropy preserves the Lévy property: how and why’, $$Stochastic Process. Appl.$$ 115 (2), 299-327. · Zbl 1075.60049 [15] Esscher, F. (1932), ‘On the probability function in the collective theory of risk’, $$Skandinavisk Aktuarietidskrift$$ 15 , 175-95. · Zbl 0004.36101 [16] Föllmer, H. and Schweizer, M. (1990), Hedging of contingent claims under incomplete information, $$in$$ M. H. A. Davis and R. J. Elliott, eds, ‘Applied Stochastic Analysis’, Vol. 5, Gordon and Breach, London/New York, pp. 389-414. · Zbl 0738.90007 [17] Gaspar, R. M. and Schmidt, T. (2010), ‘Credit risk modelling with shot-noise processes’, $$working paper$$ . [18] Gaspar, R. M. and Slinko, I. (2008), ‘On recovery and intensity’s correlation - a new class of credit risk models’, $$Journal of Credit Risk$$ 4 , 1-33. [19] Jacod, J. and Shiryaev, A. (2003), $$Limit Theorems for Stochastic Processes$$ , 2nd edn, Springer Verlag, Berlin. · Zbl 1018.60002 [20] Jang, J., Herbertsson, A. and Schmidt, T. (2011), ‘Pricing basket default swaps in a tractable shot noise model’, $$Statistics and Probability Letters$$ 8 , 1196-1207. · Zbl 1217.91182 [21] Jeanblanc, M. and Rutkowski, M. (2000), Modeling default risk: an overview, $$in$$ ‘Mathematical Finance: theory and practice Fudan University’, Modern Mathematics Series, High Education press, Beijing, pp. 171-269. [22] Kallsen, J. and Shiryaev, N. A. (2002), ‘The cumulant process and esscher’s change of measure’, $$Finance and Stochastics$$ 6 (4), 397-428. · Zbl 1035.60042 [23] Keller-Ressel, M., Schachermayer, W. and Teichmann, J. (2013), ‘Regularity of affine processes on general state spaces’, $$Electron. J. Probab.$$ 18 , 17 pp. · Zbl 1291.60153 [24] Klüppelberg, C. and Kühn, C. (2004), ‘Fractional Brownian motion as a weak limit of Poisson shot noise processes—with applications to finance’, $$Stochastic Processes and their Applications$$ 113 (2), 333-351. [25] Klüppelberg, C., Mikosch, T. and Schärf, A. (2003), ‘Regular variation in the mean and stable limits for poisson shot noise’, $$Bernoulli$$ 9 (3), 467-496. [26] Kopperschmidt, K. and Stute, W. (2009), ‘Purchase timing models in marketing: a review’, $$AStA Advances in Statistical Analysis$$ 93 (2), 123-149. · Zbl 1304.90116 [27] Kopperschmidt, K. and Stute, W. (2013), ‘The statistical analysis of self-exciting point processes’, $$Statistica Sinica$$ 23 (3), 1273-1298. · Zbl 06202707 [28] Kuczma, M. and Gilányi, A. (2009), $$An Introduction to the Theory of Functional Equations and Inequalities$$ , Springer-Verlag, New York. · Zbl 1221.39041 [29] Lane, J. A. (1984), ‘The central limit theorem for the poisson shot-noise process’, $$Journal of Applied Probability$$ 21 , 287-301. · Zbl 0541.60018 [30] Lowen, S. B. and Teich, M. C. (1990), ‘Power-law shot noise’, $$IEEE Transactions on Information Theory$$ 36 (6), 1302-1318. [31] Moreno, M., Serrano, P. and Stute, W. (2011), ‘Statistical properties and economic implications of jump-diffusion processes with shot-noise effects’, $$European Journal of Operational Research$$ 214 (3), 656-664. · Zbl 1219.91155 [32] Protter, P. (2004), $$Stochastic Integration and Differential Equations$$ , 2nd edn, Springer Verlag. Berlin Heidelberg New York. · Zbl 1041.60005 [33] Ramakrishnan, A. (1953), ‘Stochastic processes associated with random divisions of a line’, $$Proc. Cambridge Philos. Soc.$$ 49 , 473-485. · Zbl 0053.10001 [34] Rice, J. (1977), ‘On generalized shot noise’, $$Advances in Applied Probability$$ 9 , 553-565. · Zbl 0379.60052 [35] Rice, S. O. (1944), ‘Mathematical analysis of random noise’, $$The Bell System Technical Journal$$ 23 , 282-332. · Zbl 0063.06485 [36] Rice, S. O. (1945), ‘Mathematical analysis of random noise’, $$The Bell System Technical Journal$$ 24 , 46-156. · Zbl 0063.06487 [37] Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999), $$Stochastic Processes for Insurance and Finance$$ , John Wiley & Sons. New York. · Zbl 0940.60005 [38] Samorodnitsky, G. (1996), $$A class of shot noise models for financial applications$$ , Springer New York, pp. 332-353. · Zbl 0861.60057 [39] Sato, K.-I. (1999), $$Lévy Processes and Infinitely Divisible Distributions$$ , Cambridge University Press. [40] Scherer, M., Schmid, L. and Schmidt, T. (2012), ‘Shot-noise multivariate default models’, $$European Actuarial Journal$$ 2 , 161-186. · Zbl 1256.91059 [41] Schmidt, T. (2014), ‘Catastrophe insurance modeled by shot-noise processes’, $$Risks$$ 2 , 3-24. [42] Schmidt, T. and Stute, W. (2007), ‘General shot-noise processes and the minimal martingale measure’, $$Statistics \& Probability Letters$$ 77 , 1332-1338. · Zbl 1255.91411 [43] Schmidt, V. (1987), ‘On joint queue-length characteristics in infinite-server tandem queues with heavy traffic’, $$Advances in Applied Probability$$ 19 (2), 474-486. · Zbl 0637.60104 [44] Schottky, W. (1918), ‘Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern’, $$Annalen der Physik$$ 362 (23), 541-567. [45] Smith, W. (1973), ‘Shot noise generated by a semi-Markov process’, $$J. Appl. Probability$$ 10 , 685-690. · Zbl 0283.60100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.