×

zbMATH — the first resource for mathematics

Effects of regime switching on pricing credit options in a shifted CIR model. (English) Zbl 1383.62250
Ferger, Dietmar (ed.) et al., From statistics to mathematical finance. Festschrift in honour of Winfried Stute. Cham: Springer (ISBN 978-3-319-50985-3/hbk; 978-3-319-50986-0/ebook). 417-425 (2017).
Summary: Regime switching is a well-known approach to incorporate significant changes in the modelling of financial data, like interest rates and default intensities. In the context of one of the standard pricing models, the CIR++model with jumps, we analyse the effect of regime switching on the prices of credit options.
For the entire collection see [Zbl 1383.62010].

MSC:
62P05 Applications of statistics to actuarial sciences and financial mathematics
91G40 Credit risk
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ang, A. & G. Bekaert (2002). Regime switches in interest rates. \( Journal of Business and Economic Statistics\) , 20(2), 163-182.
[2] Bielecki, T. R. & M. Rutkowski (2004). \( Credit risk: Modeling, valuation and hedging\) . Springer Science+Business Media, 2nd edition. · Zbl 1134.91023
[3] Brigo, D. & N. El-Bachir (2006). Credit derivatives pricing with a smile-extended jump stochastic intensity model.
[4] Brigo, D. & F. Mercurio (2001). A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models. \( Finance and Stochastics\) , 5(3), 369-387. · Zbl 0978.91032
[5] Brigo, D. & F. Mercurio (2006). \( Interest rate models - theory and practice: With smile, inflation and credit\) . Springer Science+Business Media, 2nd edition. · Zbl 1109.91023
[6] Brigo, D. & M. Morini (2005). CDS market formulas and models.
[7] Brigo, D., M. Morini & A. Pallavicini (2013). \( Counterparty Credit Risk, Collateral and Funding.\) Wiley Finance. · Zbl 1288.91001
[8] Cox, J. C., J. E. Ingersoll Jr & S. A. Ross (1985). A theory of the term structure of interest rates. \( Econometrica\) , 53(2), 385-407. · Zbl 1274.91447
[9] Duffie, D. & K. J. Singleton (1999). Modeling term structures of defaultable bonds. \( Review of Financial Studies\) , 12(4), 687-720.
[10] Elliott, R. J., L. Aggoun & J. B. Moore (1995). \( Hidden markov models: Estimation and control\) . Springer Science+Business Media, 1st edition. · Zbl 0819.60045
[11] Elliott, R. J., L. Chan & T. K. Siu (2005). Option pricing and Esscher transform under regime switching. \( Annals of Finance\) , 1(4), 423-432. · Zbl 1233.91270
[12] Gray, S. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. \( Journal of Financial Economics\) , 42(1), 27-62.
[13] Hamilton, J. D. (1988). Rational-expectations econometric analysis of changes in regime. \( Journal of Economic Dynamics and Control\) , 12, 385-423. · Zbl 0661.62117
[14] Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. \( Econometrica\) , 57(2), 357-384. · Zbl 0685.62092
[15] Jamshidian, F. (2004). Valuation of credit default swaps and swaptions. \( Finance and Stochastics\) , 8(3), 343-371. · Zbl 1063.91034
[16] Lando, D. (1998). On Cox processes and credit risky securities. \( Review of Derivatives Research\) , 2(2), 99-120. · Zbl 1274.91459
[17] Lindgren, G. (1978). Markov regime models for mixed distributions and switching regressions. \( Scandinavian Journal of Statistics\) , 5(2), 81-91. · Zbl 0382.62073
[18] Overbeck, L. & J. Weckend (2017). Regime switching CIR tree. Preprint 2017. · Zbl 1383.62250
[19] Schönbucher, P. J. (2000). A Libor market model with default risk.
[20] Weckend, J. (2014). \( Shifted regime switching CIR diffusion tree for credit options\) . Ph.D. thesis, Justus-Liebig-University Giessen.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.