# zbMATH — the first resource for mathematics

A Lévy-driven asset price model with bankruptcy and liquidity risk. (English) Zbl 1383.62232
Ferger, Dietmar (ed.) et al., From statistics to mathematical finance. Festschrift in honour of Winfried Stute. Cham: Springer (ISBN 978-3-319-50985-3/hbk; 978-3-319-50986-0/ebook). 387-416 (2017).
Summary: We present a new asset price model, which is an enhancement of the exponential Lévy model. The possibility of bankruptcy is modelled by a single jump to zero, whereby higher probabilities for this event lead to lower asset prices. We emphasize in particular the dependence between the asset price and the probability of default. Explicit valuation formulas for European options are established by using the Fourier-based valuation method. The formulas can numerically be computed fast and thus allow to calibrate the model to market data. On markets which are not perfectly liquid, the law of one price does no longer hold and the cost of unhedgeable risks has to be taken into account. This aspect is incorporated in the recently developed two price theory (see [D. B. Madan and A. Cherny, Int. J. Theor. Appl. Finance 13, No. 8, 1149–1177 (2010; Zbl 1208.91148)]), which is discussed and applied to the proposed defaultable asset price model.
For the entire collection see [Zbl 1383.62010].
##### MSC:
 62P05 Applications of statistics to actuarial sciences and financial mathematics 60G51 Processes with independent increments; Lévy processes 60H30 Applications of stochastic analysis (to PDEs, etc.) 91B25 Asset pricing models (MSC2010)
##### Keywords:
asset price model; liquidity risk
Full Text:
##### References:
 [1] Andersen, L. and D. Buffum (2004). Calibration and implementation of convertible bond models. $$The Journal of Computational Finance$$ $$7$$ , 1-34. [2] Bachelier, L. (1900). $$Théorie de la Spéculation$$ . Ph. D. thesis, École Normale Superieure Paris. [3] Barndorff-Nielsen, O. and N. Shephard (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. $$Journal of the Royal Statistical Society, Series B$$ $$63(2)$$ , 167-241. · Zbl 0983.60028 [4] Bäurer, P. (2015). $$Credit and Liquidity Risk in Lévy Asset Price Models$$ . Ph. D. thesis, Universität Freiburg. [5] Bielecki, T. and M. Rutkowski (2004). $$Credit Risk: Modeling, Valuation and Hedging.$$ (2. ed.). Springer. · Zbl 1134.91023 [6] Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. $$The Journal of Political Economy$$ $$81(3)$$ , 637-654. · Zbl 1092.91524 [7] Brigo, D. and F. Mercurio (2001). $$Interest Rate Models - Theory and Practice$$ . Springer. · Zbl 1038.91040 [8] Carr, P., H. Geman, D. Madan, and M. Yor (2002). The fine structure of asset returns: An empirical investigation. $$Journal of Business$$ $$75(2)$$ , 305-332. [9] Carr, P., H. Geman, D. Madan, and M. Yor (2007). Self-decomposability and option pricing. $$Mathematical Finance$$ $$17(1)$$ , 31-57. · Zbl 1278.91157 [10] Carr, P. and D. Madan (2010). Local volatility enhanced by a jump to default. $$SIAM Journal of Financial Mathematics$$ $$1(1)$$ , 2-15. · Zbl 1197.91183 [11] Cherny, A. and D. Madan (2010). Markets as a counterparty: An introduction to conic finance. $$International Journal of Theoretical and Applied Finance$$ $$13(08)$$ , 1149-1177. · Zbl 1208.91148 [12] Cont, R. and P. Tankov (2004). $$Financial Modelling with Jump Processes$$ . Chapman and Hall/CRC. · Zbl 1052.91043 [13] Cont, R. and E. Voltchkova (2005). Integro-differential equations for option prices in exponential Lévy models. $$Finance and Stochastics$$ $$9(3)$$ , 299-325. · Zbl 1096.91023 [14] Davis, M. and F. Lischka (2002). Convertible bonds with market risk and credit risk. In D. Y. R. Chan, Y-K. Kwok and Q. Zhang (Eds.), $$Applied Probability$$ , Studies in Advanced Mathematics, pp. 45-58. American Mathematical Society/International Press. · Zbl 1029.91033 [15] Delbaen, F. and W. Schachermayer (2006). $$The Mathematics of Arbitrage$$ . Springer. · Zbl 1106.91031 [16] Eberlein, E. (2001). Application of generalized hyperbolic Lévy motions to finance. In O. Barndorff-Nielsen, T. Mikosch, and S. Resnick (Eds.), $$Lévy Processes: Theory and Applications$$ , pp. 319-336. Birkhäuser. · Zbl 0982.60045 [17] Eberlein, E., K. Glau, and A. Papapantoleon (2010). Analysis of Fourier transform valuation formulas and applications. $$Applied Mathematical Finance$$ $$17(3)$$ , 211-240. · Zbl 1233.91267 [18] Eberlein, E. and U. Keller (1995). Hyperbolic distributions in finance. $$Bernoulli$$ $$1(3)$$ , 281-299. · Zbl 0836.62107 [19] Eberlein, E. and K. Prause (2002). The generalized hyperbolic model: Financial derivatives and risk measures. In H. Geman, D. Madan, S. Pliska, and T. Vorst (Eds.), $$Mathematical Finance: Bachelier Congress 2000$$ , Springer Finance, pp. 245-267. Springer. · Zbl 0996.91067 [20] Eberlein, E. and S. Raible (1999). Term structure models driven by general Lévy processes. $$Mathematical Finance$$ $$9(1)$$ , 31-53. · Zbl 0980.91020 [21] Hull, J. and A. White (1990). Pricing interest rate derivative securities. $$The Review of Financial Studies$$ $$3(4)$$ , 573-592. · Zbl 1386.91152 [22] Jacod, J. and A. Shiryaev (2003). $$Limit Theorems for Stochastic Processes$$ (2. ed.). Springer. · Zbl 1018.60002 [23] Kluge, W. (2005). $$Time-inhomogeneous Lévy Processes in Interest Rate and Credit Risk Models.$$ Ph. D. thesis, Universität Freiburg. · Zbl 1135.60017 [24] Linetsky, V. (2006). Pricing equity derivatives subject to bankruptcy. $$Mathematical Finance$$ $$16(2)$$ , 255-282. · Zbl 1145.91351 [25] Madan, D., M. Konikov, and M. Marinescu (2004). Credit and basket default swaps. $$The Journal of Credit Risk$$ $$2(1)$$ , 67-87. [26] Madan, D. and F. Milne (1991). Option pricing with V.G. martingale component. $$Mathematical Finance$$ $$1(4)$$ , 39-55. · Zbl 0900.90105 [27] Madan, D. and E. Seneta (1990). The variance gamma (V.G.) model for share market returns. $$Journal of Business$$ $$63(4)$$ , 511-524. [28] Merton, R. (1973). Theory of rational option pricing. $$The Bell Journal of Economics and Management Science$$ $$4(1)$$ , 141-183. · Zbl 1257.91043 [29] Protter, P. E. (2005). $$Stochastic Integration and Differential Equations$$ (2. ed.). Springer. · Zbl 1041.60005 [30] Samuelson, P. (1965). Rational theory of warrant pricing. $$Industrial Management Review$$ $$6$$ (2), 13-32. [31] Sato, K.-I. (1999). $$Lévy Processes and Infinitely Divisible Distributions$$ . Cambridge University Press. [32] Schoutens, W. and J. Cariboni (2009). $$Lévy Processes in Credit Risk$$ . Wiley Finance. · Zbl 1192.91008 [33] Vasicek, O. (1977). An equilibrium characterization of the term structure. $$Journal of Financial Economics$$ $$5(2)$$ , 177-188. · Zbl 1372.91113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.