# zbMATH — the first resource for mathematics

Limiting experiments and asymptotic bounds on the performance of sequence of estimators. (English) Zbl 1383.62022
Ferger, Dietmar (ed.) et al., From statistics to mathematical finance. Festschrift in honour of Winfried Stute. Cham: Springer (ISBN 978-3-319-50985-3/hbk; 978-3-319-50986-0/ebook). 317-342 (2017).
Summary: In this paper, we provide a review of rather selected results among those available in the literature on asymptotic theory of statistical inference. We do not claim an exhaustive review of the relative literature, which, at any rate, could hardly be achieved in the limited space provided for a contributing paper. Instead, we focus mainly on references leading or closely related to our own research results. The discussion encompasses the concepts of limit experiments and asymptotic bounds on the performance of sequences of estimators. The concepts and methodology used are those of contiguity (defined in Definition 1), local asymptotic normality (LAN), local asymptotic mixed normality (LAMN), local asymptotic quadratic (LAQ) (all defined after relations (16.3b) and (16.4) in the paper), and local asymptotic minimax risk of a sequence of estimators.
For the entire collection see [Zbl 1383.62010].
##### MSC:
 62B15 Theory of statistical experiments
##### Keywords:
performance; sequence of estimators; statistical experiment
Full Text:
##### References:
 [1] Bahadur, R.R. (1960): On the asymptotic efficiency of tests and estimates, $$Sankhyā$$ , 22, 229-252. · Zbl 0109.12503 [2] Bahadur, R.R. (1967): Rates of convergence of estimates and test statistics. $$Ann$$ . $$Math$$ . $$Statist$$ ., 38, 303-324. · Zbl 0201.52106 [3] Basawa, I.V. and Brockwell, P.J. (1984): Asymptotic conditional inference for regular nonergodic models with an application to autoregressive processes. $$Ann. Statist$$ , 12, 161-171. · Zbl 0546.62059 [4] Basawa, I.V. and Prakasa Rao, B.L.S. (1980): $$Statistical Inference for Statistical Processes$$ , Academic Press. · Zbl 0448.62070 [5] Basawa, I.V. and Scott, D.J. (1983): $$Asymptotic optimal inference for non-ergodic models$$ . Lecture Notes in Statistics, 17, Springer-Verlag. · Zbl 0519.62039 [6] Basu, A.K. and Bhattacharya, D. (1988): Local asymptotic mixed normality of log-likelihood based on stopping times. $$Calcutta Statist. Assoc. Bull$$ ., 37, 143-159. · Zbl 0677.62016 [7] Basu, A.K. and Bhattacharya, D. (1990): Weak convergence of randomly stopped log-likelihood ratio statistics to mixed Gaussian process. $$Calcutta Statist. Assoc. Bull$$ ., 39, 137-149. · Zbl 0777.60021 [8] Basu, A.K. and Bhattacharya, D. (1992): On the asymptotic non-null distribution of randomly stopped log-likelihood ratio statistic. $$Calcutta Statist. Assoc. Bull$$ ., 42, 255-260. · Zbl 0769.62016 [9] Basu, A. K. and Bhattacharya, D. (1999): Asymptotic minimax bounds for sequential estimators of parameters in a locally asymptotically quadratic family. $$Brazilian Journal of Probability and Statistics$$ , 13, 137-148. · Zbl 0982.62067 [10] Basu, D. (1956): The concept of asymptotic efficiency. $$Sankhyā$$ , 17, 193-196. · Zbl 0073.14905 [11] Bhattacharya, D. and Basu, A. K. (2006): Local asymptotic minimax risk bounds in a locally asymptotically mixture of normal experiments under asymmetric loss. $$IMS Lecture Notes-Monograph Series$$ , 49, 312-321. · Zbl 1268.62012 [12] Bhattacharya, D. and Roussas, G. G. (1999): On asymptotically efficient tests for autoregressive process. $$Stoch$$ .$$Model Appl$$ ., 2(1), 17-30. [13] Bhattacharya, D. and Roussas, G. G. (2001): Exponential approximation for randomly stopped locally asymptotically mixture of normal experiments. $$Stoch$$ .$$Model Appl$$ ., 4(2), 56-71. [14] Bhattacharya, D., Samaneigo, F.J. and Vestrup, E. M. (2002): On the comparative performance of Bayesian and classical point estimators under asymmetric loss, $$Sankhyā$$ , Ser. B, 64, 230-266. · Zbl 1192.62059 [15] Blackwell, D. (1947): Conditional expectation and unbiased sequential estimation. $$Ann$$ . $$Math$$ . $$Stat$$ ., 18, 105-110. · Zbl 0033.07603 [16] Blackwell, D. (1951): Comparison of experiments. $$Proc. 2nd Berkeley Symp. Math. Stat. Probab.$$ , 1, 93-102. · Zbl 0044.14203 [17] Blackwell, D. (1953): Equivalent comparisons of experiments. $$Ann$$ . $$Math$$ . $$Stat$$ ., 24, 265-272. · Zbl 0050.36004 [18] Davis, R.B. (1985): Asymptotic inference when the amount of information is random. $$Proc. Berkeley conference in honor of Jerzy Neyman and Jack Kiefer$$ , 2, L. Le Cam, and R. A. Olson eds., 841-864, Wadsworth, Monterey, California. · Zbl 1373.62435 [19] Efron, B. (1975): Defining the curvature of a statistical problem (with applications to second order efficiency). $$Ann. Statist$$ ., 3(6), 1189-1242. · Zbl 0321.62013 [20] Fabian, V. and Hannan, J. (1982): On estimation and adaptive estimation for locally asymptotically normal families. $$Z.Wahrschelnlichkeitstheoric$$ $$Und Verw. Gebiete$$ , 59 (4), 459- 478. · Zbl 0464.62008 [21] Fabian, V. and Hannan, J. (1987): Local asymptotic behavior of densities. $$Statist. Decisions$$ , 5 (1-2), 105-138. · Zbl 0619.62020 [22] Greenwood, P. and Wefelmeyer, W. (1993): Asymptotic minimax of a sequential estimator for a first order autoregressive model. $$Stochastics and Stochastic Reports$$ , 38, 49-65. [23] Hájek, J. (1962): Asymptotically most powerful rank-order tests. $$Ann$$ . $$Math$$ . $$Statist$$ ., 33, 1124 -1147. · Zbl 0133.42001 [24] Hájek, J. (1970): A characterization of limiting distributions of regular estimates. $$Z.Wahrs-chelnlichkeitstheoric Und Verw. Gebiete$$ , 14, 323-330. [25] Hájek, J. (1972): Local asymptotic minimax and admissibility in estimation. $$Proc. Sixth$$$$Berkeley Symp. Math. Statist. Probab.,$$ University of California Press, Berkeley, 1, 175-194. [26] Hájek, J. and Šidák, Z. (1967): $$Theory of rank tests$$ . Academic Press, New York-London. [27] Ibragimov, I. A. and Has’minskii, R. Z. (1981):$$Statistical Estimation. Asymptotic Theory$$ , Translated from the Russian by Samuel Kotz. Applications of Mathematics, Springer-Verlag, New York-Berlin. [28] Inagaki, N. (1970): On the limiting distribution of sequence of estimators with uniformity property. $$Ann. Inst. Statist. Math$$ ., 22, 1-13. · Zbl 0282.62028 [29] Jeganathan, P. (1980): An extension of a result of L. Le Cam concerning asymptotical normality. $$Sankhyā, Ser. A$$ , 42, 146-160. · Zbl 0497.62022 [30] Jeganathan, P. (1982): On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. $$Sankhyā, Ser. A$$ , 44, 173-212. · Zbl 0584.62042 [31] Jeganathan, P. (1995): Some aspects of asymptotic theory with applications to time series models. $$Econometric Theory$$ , 2, 818-887. [32] Koul, H.L. and Pflug, G. Ch.(1990): Weakly adaptive estimators in explosive autoregression. $$Ann. Statist$$ ., 18(2), 939-960. · Zbl 0709.62083 [33] Le Cam, L. (1960): Locally asymptotically normal families of distributions. $$Univ. of$$$$California Publications in Statistics$$ , 3, 37-98. [34] Le Cam, L. (1964): Sufficiency and approximate sufficiency. $$Ann. Math. Stat$$ ., 35, 1419-1455. · Zbl 0129.11202 [35] Le Cam, L. (1972): Limit of experiments. $$Proc. 6th Berkeley Symp. Math. Stat. Probab.$$ , 1, 245-261. [36] Le Cam, L. (1986): $$Asymptotic methods in statistical decision theory$$ . Springer-Verlag, New York. · Zbl 0605.62002 [37] Le Cam, L. and Yang, G.L. (2000): Asymptotics in Statistics, Some Basic Concepts. $$Lecture notes in Statistics$$ , Springer-Verlag. · Zbl 0952.62002 [38] Loève, M. (1963): $$Probability Theory$$ (3rd Edition).Van Nostrand, Princeton. [39] Roussas, G.G. (1972): $$Contiguity of Probability Measures$$ : $$Some Applications in Statistics$$ . Cambridge Univ. Press. · Zbl 0265.60003 [40] Roussas, G.G. (2014): $$An Introduction to Measure Theoretic Probability$$ (2nd Edition). Academic Press/ Elsevier, Boson, Massachusetts. · Zbl 1287.60001 [41] Roussas, G.G. and Bhattacharya, D. (2002): Exponential approximation of distributions. $$Teoriya Imovirnostey ta Matematichna Statystika$$ , 66, 108-120. Also, in $$Theory of Probability and Mathematical Statistics$$ , 66, 119-132 (English version, 2003). · Zbl 1029.60020 [42] Roussas, G.G. and Bhattacharya, D. (2007): Asymptotic expansions, exponential approximation and the Hájek-Inagaki representation theorem under a general dependence set-up. $$Proceedings of 20th Panhelenic Statistical Conference (Invited Keynote address)$$ , $$Nikosia$$ , Cyprus, 45-65. [43] Roussas, G.G. and Bhattacharya, D. (2008): Hájek-Inagaki representation theorem under a general stochastic process framework, based on stopping times. $$Stat. Probab. Lett.,$$ 78, 2503- 2510. · Zbl 1169.62013 [44] Roussas, G.G. and Bhattacharya, D. (2009): Hájek-Inagaki convolution representation theorem for randomly stopped locally asymptotically mixed normal experiments. $$Stat. Infer.$$ Stoch. Process, 12, 185-201. · Zbl 1205.62145 [45] Roussas, G.G. and Bhattacharya, D. (2010): Asymptotically optimal tests under a general dependence set-up. $$Jour. of$$$$Statistical Research$$ , 44(1), 57-83. [46] Roussas, G.G. and Bhattacharya, D. (2011): Revisiting local asymptotic normality (LAN) and passing on to local asymptotic mixed normality (LAMN) and local asymptotic quadratic (LAQ) experiments. Chapter 17 in $$Advances in Directional and Linear Statistics$$ , A festschrift for Sreenivasa Rao Jammalamadaka, Eds. Martin T. Wells and Ashis Sengupta, Springer-Verlag, Berlin, 253-280. [47] Roussas, G.G. and Soms, A. (1972): On the exponential approximation of a family of probability measures and representation theorem of Hájek-Inagaki. $$Ann. Inst. Statist. Math$$ ., 25, 27-39. · Zbl 0385.60015 [48] Roychowdhury, S. and Bhattacharya, D. (2008): On the Performance of Estimators of Parameter in Autoregressive Model of Order One and Optimal Prediction under Asymmetric Loss. $$Model Assisted Statistics and Applications$$ . 3(3), 225-232. · Zbl 1247.62229 [49] Roychowdhury, S. and Bhattacharya, D. (2010): On Estimation of Regression Parameter under Asymmetric Loss, $$Journal of Applied Probability and Statistics$$ . 5(2), 161-168. [50] Schick, A. (1988): On estimation in LAMN families when there are nuisance parameters present$$. Sankhyā$$ , $$Ser.$$ · Zbl 0664.62035 [51] Strasser, H. (1985): $$Mathematical Theory of Statistics. Statistical experiments and asymptotic$$$$decision theory$$ . De Gruyter Studies in Mathematics, 7, Walter de Gruyter and Co., Berlin. · Zbl 0594.62017 [52] Sweeting, T. (1992): $$Asymptotic ancillarity and conditional inference for stochastic processes$$ . $$Ann$$ .$$Statist.$$ , 20(1), 580-589. · Zbl 0757.62013 [53] Swensen, A. (1980): $$Asymptotic inference for a class of stochastic processes$$ . Ph.D. thesis, Univ. of California, Berkeley. [54] Taniguchi, M. and Kakizawa, Y. (2000): $$Asymptotic theory of statistical inference for time$$$$series$$ . Springer Series in Statistics, Springer-Verlag. · Zbl 0955.62088 [55] Torgersen, E. (1991): $$Comparison of Statistical Experiments$$ . Encyclopedia of Mathematics and its Applications, 36, Cambridge University Press, Cambridge. · Zbl 0732.62009 [56] van der Vaart, A.W. (1998): $$Asymptotic Statistics$$ , Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press. [57] Wald, A. (1939): Contributions to the theory of statistical estimation and testing hypotheses. $$Ann$$ . $$Math$$ . $$Statist$$ . 10, 299-326. · Zbl 0024.05405 [58] Wald, A. (1943): Tests of statistical hypotheses concerning several parameters when the number of observations is large. $$Trans$$ . $$Amer$$ . $$Math$$ . $$Soc$$ ., 54, 426-482. · Zbl 0063.08120 [59] Wald, A. (1947): An essentially complete class of admissible decision functions. $$Ann$$ . $$Math$$ . $$Statist$$ . 18, 549-555. · Zbl 0029.30604 [60] Wald, A. (1949): Note on consistency of the maximum likelihood estimate. $$Ann$$ . $$Math$$ . $$Statist$$ ., 20, 595-601. · Zbl 0034.22902 [61] Wald, A. (1950): $$Statistical Decision Functions$$ . John Wiley and Sons, New York. · Zbl 0040.36402 [62] Weiss, L. and Wolfowitz, J. (1967): Maximum probability estimators.$$Ann. Inst. Statist. Math.$$ , 19, 193-206. · Zbl 0183.21203 [63] Wolfowitz, J. (1965): Asymptotic efficiency of the maximum likelihood estimator. $$Theor. Probab. Appl$$ ., 10, 247-260. · Zbl 0142.15402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.