zbMATH — the first resource for mathematics

Kader – an R package for nonparametric kernel adjusted density estimation and regression. (English) Zbl 1383.62009
Ferger, Dietmar (ed.) et al., From statistics to mathematical finance. Festschrift in honour of Winfried Stute. Cham: Springer (ISBN 978-3-319-50985-3/hbk; 978-3-319-50986-0/ebook). 291-315 (2017).
Summary: In a series of three papers published from 2011 through 2013, Stute and coauthors introduced a fully data-adaptive nonparametric kernel method for pointwise univariate density estimation and likewise for regression estimation. For density estimation a robustified version of this adaptive method was also provided and the pointwise method was extended to an \(L_2\)-approach. Here, an R package is presented that implements (so far) parts of those methods. This package is a first attempt to narrow the gap between the theoretical derivation of the methods and their availability for practical applications.
For the entire collection see [Zbl 1383.62010].
62-04 Software, source code, etc. for problems pertaining to statistics
62G07 Density estimation
62G08 Nonparametric regression and quantile regression
Full Text: DOI
[1] Bowman, A.W., Azzalini, A.: sm: nonparametric smoothing methods. R package version 2.2-5.4 (2014). Available from
[2] Duong, T., Wand, M.: feature: Local Inferential Feature Significance for Multivariate Kernel Density Estimation. R package version 1.2.13. (2015). Available from
[3] Duong, T.: ks: Kernel Smoothing. R package version 1.10.4 (2016). Available from
[4] Eichner, G., Stute, W.: Kernel adjusted nonparametric regression. J. Stat. Plan. Infer. 142 , 2537-2544 (2012) doi: · Zbl 1252.62045
[5] Eichner, G., Stute, W.: Rank transformations in kernel density estimation. J. Nonpar. Stat. 25 , 427-445 (2013) doi: · Zbl 1297.62080
[6] Eichner, G., Stute, W.: Rank-Based Kernel Smoothing - · Zbl 1297.62080
[7] Feluch, W., Koronacki, J.: A note on modified cross-validation in density estimation. Comput. Statist. Data Anal. 13 , 143-151 (1992) · Zbl 0850.62343
[8] Guidoum, A.C.: kedd: Kernel estimator and bandwidth selection for density and its derivatives.R package version 1.0.3 (2015). Available from
[9] Härdle, W.: Applied nonparametric regression. Cambridge Univ. Press, Cambridge (1990)
[10] Hayfield, T., Racine, J.S.: Nonparametric Econometrics: The np Package. J. Stat. Software 27 (5) (2008).
[11] Herrmann, E., packaged for R and enhanced by Maechler, M.: lokern: Kernel Regression Smoothing with Local or Global Plug-in Bandwidth, R package version 1.1-8 (2016). Available from
[12] Nadaraya, E.A.: On estimating regression. Theory Prob. Appl. 10 , 186-190 (1964) · Zbl 0134.36302
[13] Parzen, E.: On the Estimation of a Probability Density Function and the Mode. Ann. Math. Statist. 33 , 1065-1076 (1962) · Zbl 0116.11302
[14] R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
[15] Rosenblatt, M.: Remarks on some Nonparametric Estimates of a Density Function. Ann. Math. Statist. 27 832-837 (1956) · Zbl 0073.14602
[16] Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society series B, 53 , 683-690 (1991) · Zbl 0800.62219
[17] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1986) · Zbl 0617.62042
[18] Srihera, R., Stute, W.: Kernel Adjusted Density Estimation. Statistics Probability Letters 81 , 571-579 (2011) doi: · Zbl 1209.62062
[19] Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer New York (2002) · Zbl 1006.62003
[20] Wand, M.: KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995). R package version 2.23-15 (2015). Available from
[21] Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)
[22] Watson, G.S.: Smooth regression · Zbl 0137.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.