×

zbMATH — the first resource for mathematics

Differential expansion for link polynomials. (English) Zbl 1383.57002
Summary: The differential expansion is one of the key structures reflecting group theory properties of colored knot polynomials, which also becomes an important tool for evaluation of non-trivial Racah matrices. This makes highly desirable its extension from knots to links, which, however, requires knowledge of the \(6j\)-symbols, at least, for the simplest triples of non-coincident representations. Based on the recent achievements in this direction, we conjecture a shape of the differential expansion for symmetrically-colored links and provide a set of examples. Within this study, we use a special framing that is an unusual extension of the topological framing from knots to links. In the particular cases of Whitehead and Borromean rings links, the differential expansions are different from the previously discovered.

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chern, S.-S.; Simons, J.; Witten, E., Ann. Math., Commun. Math. Phys., 121, 351-399, (1989)
[2] Dunfield, N. M.; Gukov, S.; Rasmussen, J.; Gukov, S.; Stosic, M.; Gukov, S.; Stosic, M.; Gorsky, E.; Gukov, S.; Stosic, M.; Arthamonov, S.; Mironov, A.; Morozov, A.; Morozov, An.; Gukov, S.; Nawata, S.; Saberi, I.; Stosic, M.; Sulkowski, P., Exp. Math., Proc. Symp. Pure Math., Geom. Topol. Monogr., J. High Energy Phys., J. High Energy Phys., 1603, 309-367, (2016)
[3] Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An., J. High Energy Phys., 1207, (2012)
[4] Mironov, A.; Morozov, A.; Morozov, An., AIP Conf. Proc., 1562, 123-155, (2013)
[5] Arthamonov, S.; Mironov, A.; Morozov, A.; Morozov, An., J. High Energy Phys., 04, (2014)
[6] Kononov, Ya.; Morozov, A., JETP Lett., 101, 831-834, (2015)
[7] Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.; Mironov, A.; Morozov, A.; Morozov, An., Nucl. Phys. B, Mod. Phys. Lett. A, 29, 171-194, (2014)
[8] Kononov, Ya.; Morozov, A.; Kononov, Ya.; Morozov, A., Mod. Phys. Lett. A, 31, 1650223, (2016)
[9] Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An.; Mironov, A.; Morozov, A.; Mironov, A.; Morozov, A., Int. J. Mod. Phys. A, Phys. Lett. B, 755, 47-57, (2016)
[10] Mariño, M.; Vafa, C.; Mariño, M., Enumerative geometry and knot invariants, Contemp. Math., 310, 185-204, (2002), in: 70th Meeting between Physicists, Theorist and Mathematicians, Strasbourg, France, May 23-25, 2002
[11] Atiyah, M., Topology, 29, 1, (1990)
[12] Zodinmawia; Ramadevi, P.; Zodinmawia; Ramadevi, P.; Anokhina, A.; Morozov, An., Nucl. Phys. B, Teor. Mat. Fiz., 178, 3-68, (2014)
[13] C. Bai, J. Jiang, J. Liang, A. Mironov, A. Morozov, An. Morozov, A. Sleptsov, Quantum Racah matrices up to level 3, in press.
[14] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B.R.; Millet, K.; Ocneanu, A.; Przytycki, J. H.; Traczyk, K. P., Bull. Am. Meteorol. Soc., Kobe J. Math., 4, 115-139, (1987)
[15] Dunin-Barkowski, P.; Mironov, A.; Morozov, A.; Sleptsov, A.; Smirnov, A., J. High Energy Phys., 03, (2013)
[16] Mironov, A.; Morozov, A.; Morozov, An., J. High Energy Phys., 1203, (2012)
[17] Mironov, A.; Morozov, A.; Morozov, An.; Sleptsov, A.; Morozov, A.; Morozov, A.; Morozov, A.; Morozov, A.; Shakirov, Sh.; Sleptsov, A., JETP Lett., Nucl. Phys. B, J. High Energy Phys., Phys. Lett. B, 766, 291-300, (2017)
[18] Kucharski, P.; Reineke, M.; Stosic, M.; Sulkowski, P.; Kucharski, P.; Reineke, M.; Stosic, M.; Sulkowski, P., Phys. Rev. D, 96, (2017)
[19] Mironov, A.; Morozov, A.; Morozov, An.; Ramadevi, P.; Singh, V. K., J. High Energy Phys., 1507, (2015)
[20] Rosso, M.; Jones, V. F.R.; Tierz, M.; Brini, A.; Eynard, B.; Mariño, M.; Mironov, A.; Mkrtchyan, R.; Morozov, A., J. Knot Theory Ramif., Mod. Phys. Lett. A, Ann. Henri Poincaré, J. High Energy Phys., 02, 8, 1365-1378, (2016)
[21] Lin, X.-S.; Zheng, H., Trans. Am. Math. Soc., 362, 1-18, (2010)
[22] Kaul, R. K.; Govindarajan, T. R.; Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Ramadevi, P.; Sarkar, T., Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, 600, 487-511, (2001)
[23] Mironov, A.; Morozov, A.; Morozov, An.; Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An.; Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.; Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.; Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.; Sleptsov, A.; Mironov, A.; Morozov, A.; Morozov, An.; Sleptsov, A.; Mironov, A.; Morozov, A.; Morozov, An.; Sleptsov, A., (Rebhan, A.; Katzarkov, L.; Knapp, J.; Rashkov, R.; Scheidegger, E., Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, (2013), World Scientific), Int. J. Mod. Phys. A, Nucl. Phys. B, Adv. High Energy Phys., J. Mod. Phys. A, J. High Energy Phys., Phys. Lett. B, 760, 45-58, (2016)
[24] Zodinmawia’s PhD thesis, 2014.
[25] Guadagnini, E.; Martellini, M.; Mintchev, M.; Guadagnini, E.; Martellini, M.; Mintchev, M.; Reshetikhin, N. Yu.; Turaev, V. G., (Clausthal Proc., (1989)), Phys. Lett. B, Commun. Math. Phys., 127, 1-26, (1990)
[26] Aganagic, M.; Ekholm, T.; Ng, L.; Vafa, C., Adv. Theor. Math. Phys., 18, 827-956, (2014)
[27] Labastida, J. M.F.; Mariño, M.
[28] Bar-Natan, D.; Morrison, S.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.