zbMATH — the first resource for mathematics

On the \(C^*\)-algebraic approach to topological phases for insulators. (English) Zbl 1382.82045
The \(C^*\)-algebraic approach to topological insulators is based on the non-commutative topology of the \(C^*\)-algebra of observables of the insulator in the one-particle approximation. The author relates the symmetries of insulators to graded real structures on the observable \(C^*\)-algebra and classifies the topological phases using A. van Daele’s formulation of \(K\)-theory [Q. J. Math., Oxf. II. Ser. 39, No. 154, 185–199 (1988; Zbl 0657.46050)].

82D20 Statistical mechanical studies of solids
81V70 Many-body theory; quantum Hall effect
46L80 \(K\)-theory and operator algebras (including cyclic theory)
Full Text: DOI arXiv
[1] Bellissard, J.: K-theory of \(C^*\)-Algebras in Solid State Physics. Statistical Mechanics and Field Theory: Mathematical Aspects. Springer, Berlin (1986) · Zbl 0612.46066
[2] Bellissard, J; Elst, A; Schulz-Baldes, H, The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451, (1994) · Zbl 0824.46086
[3] Bellissard, J; Herrmann, D; Zarrouati, M, Hull of aperiodic solids and gap labeling theorems, Dir. Math. Quasicryst., 13, 207-258, (2000) · Zbl 0972.52014
[4] Blackadar, B.: K-theory for Operator Algebras, 2nd edn. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press, Cambridge (1998) · Zbl 0913.46054
[5] Boersema, JL; Loring, TA, K-theory for real \(C^*\)-algebra s via unitary elements with symmetries, N. Y. J. Math., 22, 1139-1220, (2016) · Zbl 1358.46068
[6] de la Harpe, P.: Classical groups and classical Lie algebras of operators. In: Proceedings of Symposia in Pure Mathematics Operator Algebras and Applications, Part I (Kingston, Ont., 1980), vol. 38, pp. 477-513. American Mathematical Society, Providence (1982)
[7] Nittis, G; Gomi, K, Classification of “real” Bloch-bundles: topological quantum systems of type AI, J. Geom. Phys., 86, 303-338, (2014) · Zbl 1316.57019
[8] Nittis, G; Gomi, K, Classification of “quaternionic” Bloch-bundles: topological insulators of type AII, Commun. Math. Phys., 339, 1-55, (2015) · Zbl 1326.57047
[9] Echterhoff, S; Williams, D, Inducing primitive ideals, Trans. Am. Math. Soc., 360, 6113-6129, (2008) · Zbl 1159.46037
[10] De Nittis, G., Gomi, K.: Chiral vector bundles: a geometric model for class AIII topological quantum systems. arXiv:1504.04863 (2015) · Zbl 1326.57047
[11] Elliott, GA; Natsume, T; Nest, R, Cyclic cohomology for one-parameter smooth crossed products, Acta Math., 160, 285-305, (1988) · Zbl 0655.46054
[12] Freed, DS; Moore, GW, Twisted equivariant matter, Ann. Henri Poincaré, 14, 1927-2023, (2013) · Zbl 1286.81109
[13] Grossmann, J; Schulz-Baldes, H, Index pairings in presence of symmetries with applications to topological insulators, Commun. Math. Phys., 343, 477-513, (2016) · Zbl 1348.82083
[14] Kellendonk, J., Richard, S.: Topological boundary maps in physics. In: Perspectives in Operator Algebras and Mathematical Physics. Theta Series in Advanced Mathematics, vol. 8, pp. 105-121. Theta, Bucharest (2008) · Zbl 1199.81029
[15] Kellendonk, J, Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys., 7, 1133-1180, (1995) · Zbl 0847.52022
[16] Kennedy, R; Zirnbauer, M, Bott periodicity for \({\mathbb{Z}}_2\) symmetric ground states of gapped free-fermion systems, Commun. Math. Phys., 342, 909-963, (2016) · Zbl 1346.81159
[17] Kitaev, A.: Periodic table for topological insulators and superconductors. In: Advances in Theoretical Physics: Landau Memorial Conference. AIP Conference Proceedings, vol. 1134, pp. 22-30 (2009) · Zbl 1180.82221
[18] Mantoiu, M., Purice, R., Richard, S.: Twisted crossed products and magnetic pseudodifferential operators. In: Advances in Operator Algebras and Mathematical Physics, Theta Series in Advanced Mathematics, vol. 5, pp. 137-172. Theta, Bucharest (2005) · Zbl 1199.46158
[19] Packer, J., Raeburn, I.: Twisted crossed products of C*-algebras. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 106. no. 02. Cambridge University Press, Cambridge (1989) · Zbl 0757.46056
[20] Pimsner, M; Voiculescu, D, Exact sequences for \(K\)-groups of certain cross products of \(C^*\)-algebras, J. Oper. Theory, 4, 93-118, (1980) · Zbl 0474.46059
[21] Roe, J, Paschke duality for real and graded \(C^*\)-algebras, Q. J. Math., 55, 325-331, (2004) · Zbl 1072.46047
[22] Rordam, M., Larsen, F., Laustsen, N.J.: An Introduction to K-theory of \(C^*\)-Algebras. Cambridge University Press, Cambridge (2000) · Zbl 0967.19001
[23] Sadun, L; Williams, RF, Tiling spaces are Cantor set fiber bundles, Ergod. Theory Dyn. Syst., 23, 307-316, (2003) · Zbl 1038.37014
[24] Schnyder, AP; Ryu, S; Furusaki, A; Ludwig, AWW, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B, 78, 195125, (2008)
[25] Schröder, H.: \(K\)-Theory for Real \(C^*\)-Algebras and Applications. Volume 290 of Pitman Research Notes in Mathematics Series (1993) · Zbl 0655.46054
[26] Schulz-Baldes, H, \({\mathbb{Z}}_2\)-indices and factorization properties of odd symmetric Fredholm operators, Doc. Math., 20, 1481-1500, (2015) · Zbl 1341.47014
[27] Thiang, GC, On the \(K\)-theoretic classification of topological phases of matter, Ann. Henri Poincaré, 17, 757-794, (2016) · Zbl 1344.81144
[28] Thouless, DJ; Kohmoto, M; Nightingale, MP; Nijs, M, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405-408, (1982)
[29] Daele, A, A note on the K-group of a graded Banach algebra, Bull. Soc. Math. Belg. Sér. B, 40, 353-359, (1988) · Zbl 0668.46037
[30] Daele, A, K-theory for graded Banach algebras I, Q. J. Math., 39, 185-199, (1988) · Zbl 0657.46050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.