×

Analysis of fibrous elastic composites with nonuniform imperfect adhesion. (English) Zbl 1382.74031

Summary: In most composites, the fiber-matrix adhesion is imperfect; the continuity conditions for stresses and displacements are not satisfied. In this contribution, effective elastic moduli are obtained by means of the asymptotic homogenization method (AHM), for three-phase fibrous composites (matrix/mesophase/fiber) with parallelogram periodic cell. Interaction between fiber and matrix is considered, and this is called the mesophase model where the nonuniform mesophase is studied. Besides, there is another type of matrix-fiber contact which is called nonuniform spring imperfect contact. In this case, the contrast or jump of the displacements in the boundary of each phase is proportional to the corresponding component of the tension in the interface in terms of a parameter given by a certain function that depends on the position. The constituents of the composites exhibit transversely isotropic properties. A doubly periodic parallelogram array of cylindrical inclusions under longitudinal shear is considered. The three-phase model is validated by the Finite Element Method and the AHM both approaches applied to two-phase composites with nonuniform spring imperfect contact. Comparisons with theoretical and experimental results verified that the present model is efficient for the analysis of composites with presence of nonuniform imperfect interface and parallelogram cell. The effect of the nonuniform imperfection on the shear effective property is observed. The present method can provide benchmark results for other numerical and approximate methods.

MSC:

74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Huang H., Talreja R.: Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 65, 1964-1981 (2005) · doi:10.1016/j.compscitech.2005.02.019
[2] Manson Wakeman M.D., Bernet N.: Composite processing and manufacturing: an overview, Compreh Comp. Mater. 2, 577. Elsevier Science Ltd, Oxford, UK (2000)
[3] Kushch V.I.: Transverse conductivity of unidirectional fibrous composite with interface arc cracks. Int. J. Eng. Sci. 48, 343-356 (2010) · Zbl 1213.74088 · doi:10.1016/j.ijengsci.2009.09.005
[4] Prakash R.: Significance of defects in the fatigue failure of carbon fibre reinforced. Plast. Fibre Sci. Technol. 14, 171-181 (1981) · doi:10.1016/0015-0568(81)90009-9
[5] Theocaris P.S.: The Mesophase Concept in Composites. Springer, Berlin (1987) · doi:10.1007/978-3-642-70182-5
[6] Hashin Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50, 2509-2537 (2002) · Zbl 1080.74006 · doi:10.1016/S0022-5096(02)00050-9
[7] Guinovart-Díaz R., Rodríguez-Ramos R., Bravo-Castillero J., Sabina F.J., Maugin G.A.: Closed-form thermo-elastic moduli of a periodic three-phase fiber-reinforced composite. J. Therm. Stress. 28, 1067-1093 (2005) · doi:10.1080/014957390967730
[8] Abdelmoula R., Coutris M., Marigo J.: Comportement asymptotique d’une interface mince. C. R. Acad. Sci. II 326, 237-242 (1998) · Zbl 0968.74025
[9] Benveniste Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54(4), 708-734 (2006) · Zbl 1120.74323 · doi:10.1016/j.jmps.2005.10.009
[10] Klarbring A.: Derivation of a model of adhesively bonded joints by the asymptotic expansion method. Int. J. Eng. Sci. 29, 493-512 (1991) · Zbl 0762.73069 · doi:10.1016/0020-7225(91)90090-P
[11] Rizzoni R., Lebon F.: Asymptotic analysis of an elastic thin interphase with mismatch strain. Eur. J. Mech. A Solid 36, 1-8 (2012) · Zbl 1348.74029 · doi:10.1016/j.euromechsol.2012.02.005
[12] Benveniste Y., Miloh T.: Imperfect soft and stiff interfaces in two dimensional elasticity. Mech. Mater. 33, 309-323 (2001) · doi:10.1016/S0167-6636(01)00055-2
[13] Achenbach J.D., Zhu H.: Effect of interphases on micro and macro mechanical behaviour of hexagonal-array fiber composites. J. Appl. Mech. 57, 956-963 (1990) · doi:10.1115/1.2897667
[14] Hashin Z.: Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater. 8, 333-338 (1990) · doi:10.1016/0167-6636(90)90051-G
[15] Hashin Z.: The spherical inclusion with imperfect interface. J. Appl. Mech. 58, 444-449 (1991) · doi:10.1115/1.2897205
[16] Hashin Z.: Thermoelastic properties of particulate composites with imperfect interface J. Mech. Phys. Solids 39, 745-762 (1991) · doi:10.1016/0022-5096(91)90023-H
[17] López-Realpozo J.C., Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Otero J.A., Sabina F.J., Lebon F., Dumont S., Sevostianov I.: Effective elastic shear stiffness of a periodic fibrous composite with non-uniform imperfect contact between the matrix and the fibers. Int. J. Solids Struct. 51(6), 1253-1262 (2014) · Zbl 1382.74031 · doi:10.1016/j.ijsolstr.2013.12.015
[18] Molkov, B.A., Pobedria, B.E.: Effective characteristic of fibrous unidirectional composite with periodic structure. Mech. Solids. 2, 119-129 (1985) (in Russian)
[19] Abolfathi N., Abhay N., Ghodrat K., Chad U.: A micromechanical characterization of angular bidirectional fibrous composites. Comput. Mater. Sci. 43, 1193-1206 (2008) · doi:10.1016/j.commatsci.2008.03.017
[20] Jiang C.P., Xu Y.L., Cheung Y.K., Lo S.H.: A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application. Mech. Mater. 36, 225-237 (2004) · doi:10.1016/S0167-6636(03)00010-3
[21] Rodríguez-Ramos R., Yan P., López-Realpozo J.C., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J., Jiang C.P.: Two analytical models for the study of periodic fibrous elastic composite with different unit cells. Compos. Struct. 93, 709-714 (2011) · doi:10.1016/j.compstruct.2010.08.008
[22] Guinovart-Díaz R., López-Realpozo J.C., Rodríguez-Ramos R., Bravo-Castillero J., Ramírez M., Camacho-Montes H., Sabina F.J.: Influence of parallelogram cells in the axial behaviour of fibrous composite. Int. J. Eng. Sci. 49, 75-84 (2011) · Zbl 1236.74057 · doi:10.1016/j.ijengsci.2010.06.024
[23] López-Realpozo J.C., Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J.: Transport properties in fibrous elastic rhombic composite with imperfect contact condition. Int. J. Mech. Sci. 53, 98-107 (2011) · Zbl 1423.74801 · doi:10.1016/j.ijmecsci.2010.11.006
[24] Pobedrya, B.E.: Mechanics of composite materials. Moscow State University Press, Moscow (1984) (in Russian). · Zbl 0555.73069
[25] Bakhvalov N., Panasenko G.: Homogenisation: Averaging Processes in Periodic Media. Kluwer, Dordrecht (1989) · Zbl 0692.73012 · doi:10.1007/978-94-009-2247-1
[26] Muskhelishvili N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953) · Zbl 0052.41402
[27] Shodja H.M, Tabatabaei S.M, Kamali M.T.: A piezoelectric medium containing a cylindrical inhomogeneity: Role of electric capacitors and mechanical imperfections. Int. J. Solids Struct. 44, 6361-6381 (2007) · Zbl 1166.74344 · doi:10.1016/j.ijsolstr.2007.02.029
[28] Nairn J.A.: Numerical implementation of imperfect interfaces. Comput. Mater. Sci. 40, 525-536 (2007) · doi:10.1016/j.commatsci.2007.02.010
[29] Dumont S., Lebon F., Rizzoni R.: An asymptotic approach to the adhesion of thin stiff films. Mech. Res. Commun. 58, 24-35 (2014) · doi:10.1016/j.mechrescom.2014.01.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.