×

A hyperpower iterative method for computing the generalized Drazin inverse of Banach algebra element. (English) Zbl 1382.65157

Summary: A quadratically convergent Newton-type iterative scheme is proposed for approximating the generalized Drazin inverse \(b^{\mathrm d}\) of the Banach algebra element \(b\). Further, its extension into the form of the hyperpower iterative method of arbitrary order \(p\geq 2\) is presented. Convergence criteria along with the estimation of error bounds in the computation of \(b^{\mathrm d}\) are discussed. Convergence results confirms the high order convergence rate of the proposed iterative scheme.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Srivastava S and Gupta D K 2015 An iterative method for solving general restricted linear equations. Appl. Math. Comput. 262: 344-353 · Zbl 1410.65083 · doi:10.1016/j.amc.2015.04.047
[2] Srivastava S and Gupta D K 2014 A new representation for \[A^{(2,3)}_{T,S}\] AT,S(2,3). Appl. Math. Comput. 243: 514-521 · Zbl 1335.15008 · doi:10.1016/j.amc.2014.06.010
[3] Stanimirović P S and Soleymani F 2014 A class of numerical algorithms for computing outer inverses. J. Comput. Appl. Math. 263: 236-245 · Zbl 1301.65032 · doi:10.1016/j.cam.2013.12.033
[4] Djordjević D S, Stanimirović P S and Wei Y 2004 The representation and approximations of outer generalized inverses. Acta Math. Hung. 104: 1-26 · Zbl 1071.65075 · doi:10.1023/B:AMHU.0000034359.98588.7b
[5] Stanimirović P S, Pappas D, Katsikis V N and Stanimirović I P 2012 Full-rank representations of outer inverses based on the \[QR\] QR decomposition. Appl. Math. Comput. 218: 10321-10333 · Zbl 1246.65067 · doi:10.1016/j.amc.2012.04.011
[6] Ben-Israel A and Greville T N E 2003 Generalized inverses: theory and applications. 2nd ed. New York: Springer · Zbl 1026.15004
[7] Zhang X and Chen G 2006 The computation of Drazin inverse and its application in Markov chains. Appl. Math. Comput. 183: 292-300 · Zbl 1112.65038 · doi:10.1016/j.amc.2006.05.076
[8] Srivastava S and Gupta D K 2014 A higher order iterative method for \[A^{(2)}_{T,S}\] AT,S(2). J. Appl. Math. Comput. 46: 147-168 · Zbl 1305.65128 · doi:10.1007/s12190-013-0743-4
[9] Srivastava S and Gupta D K 2015 An iterative method for solving singular linear systems with index one. Afr. Math. doi 10.1007/s13370-015-0379-7 · Zbl 1335.15008
[10] Sheng X and Chen G 2008 Several representations of generalized inverse \[A^{(2)}_{T,S}\] AT,S(2) and their application. Int. Comput. Math. 85(9): 1441-1453 · Zbl 1151.15010 · doi:10.1080/00207160701532767
[11] Soleymani F and Stanimirović P S 2013 A higher order iterative method for computing the Drazin inverse. Sci. World J. 2013: 115-124
[12] Stanimirović P S and Petković M D 2013 Gauss-Jordan elimination method for computing outer inverses. Appl. Math. Comput. 219: 4667-4679 · Zbl 06447273 · doi:10.1016/j.amc.2012.10.081
[13] Koliha J J 1996 A generalized Drazin inverse. Glasgow Math. J. 38: 367-381 · Zbl 0897.47002 · doi:10.1017/S0017089500031803
[14] Djordjević D S and Stanimirović P S 2001 On the generalized Drazin inverse and generalized resolvent. Czech. Math. J. 51: 617-634 · Zbl 1079.47501 · doi:10.1023/A:1013792207970
[15] Deng C and Wei Y 2009 A note on the Drazin inverse of an anti-triangular matrix. Linear Algebra Appl. 431: 1910-1922 · Zbl 1177.15003 · doi:10.1016/j.laa.2009.06.030
[16] Djordjević D S 2015 Generalized Drazin inverse of certain block matrices in Banach algebras. Bull. Iran. Math. Soc. 41: 529-542 · Zbl 1373.47002
[17] Cvetković-Ilć D S, Djordjević D S and Wei Y 2002 Additive results for the generalized Drazin inverse in a Banach algebra. Linear Algebra Appl. 418: 53-61 · Zbl 1104.47040 · doi:10.1016/j.laa.2006.01.015
[18] Mosić D 2015 On deriving the generalized Drazin inverse of block matrices in a Banach algebra. Quaest. Math. doi:10.2989/16073606.2015.1096861 · Zbl 1335.46039
[19] Shia Y and Hou G 2013 On the Drazin inverse of the linear combinations of two idempotents in a complex Banach algebra. Linear Algebra Appl. 439: 3532-3540 · Zbl 1292.46032 · doi:10.1016/j.laa.2013.09.031
[20] Mosić D and Djordjević D S 2015 Weighted pre-orders involving the generalized Drazin inverse. Appl. Math. Comput. 270: 496-504 · Zbl 1410.15011 · doi:10.1016/j.amc.2015.08.050
[21] Robles J, Martinez-Serrano M F and Dopazo E 2016 On the generalized Drazin inverse in Banach algebras in terms of the generalized Schur complement. Appl. Math. Comput. 284: 162-168 · Zbl 1410.46031 · doi:10.1016/j.amc.2016.02.057
[22] Djordjević D S 2007 Iterative methods for computing generalized inverses. Appl. Math. Comput. 189: 101-104 · Zbl 1125.65046 · doi:10.1016/j.amc.2006.11.063
[23] Liu X, Zhou G and Yu Y 2011 Note on the iterative methods for computing the generalized inverse over Banach spaces. Num. Linear Algebra Appl. 18: 775-787 · Zbl 1265.65067 · doi:10.1002/nla.763
[24] Liu X and Huang F 2013 Higher-order convergent iterative method for computing the generalized inverse over Banach spaces. Abst. Appl. Anal. 2013: 1-5 · Zbl 1291.65104
[25] Srivastava S and Gupta D K 2015 The iterative methods for \[A^{(2)}_{T,S}\] AT,S(2) of the bounded linear operator between Banach spaces. J. Appl. Math. Comput. 49: 383-396 · Zbl 1327.65100 · doi:10.1007/s12190-014-0844-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.