# zbMATH — the first resource for mathematics

Numerical integration of discontinuities on arbitrary domains based on moment fitting. (English) Zbl 1382.65066
Summary: Discretization methods based on meshes that do not conform to the geometry of the problem under consideration require special treatment when it comes to the integration of finite elements that are broken by the boundary or internal interfaces. To this end, we propose a numerical approach suitable for integrating broken elements with a low number of integration points. In this method, which is based on the moment fitting approach, an individual quadrature rule is set up for each cut element. The approach requires a B-rep representation of the broken element, which can be either achieved by processing a triangulated surface obtained from a CAD software or by taking advantage of a voxel model resulting from computed tomography. The numerical examples presented in this paper reveal that the proposed method delivers for a wide variety of geometrical situations very accurate results and requires a rather low number of integration points.

##### MSC:
 65D30 Numerical integration
##### Software:
libigl; LAPACK; GTS; CGAL; Cork; GitHub
Full Text:
##### References:
 [1] Melenk, JM; Babuška, I, The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289-314, (1996) · Zbl 0881.65099 [2] Babuška, I; Melenk, JM, The partition of unity method, Int J Numer Methods Eng, 40, 727-758, (1997) · Zbl 0949.65117 [3] Moës, N; Dolbow, J; Belytschko, T, A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 64, 131-150, (1999) · Zbl 0955.74066 [4] Duarte, CAM; Babuška, I; Oden, JT, Generalized finite element method for three-dimensional structural mechanics problems, Comput Struct, 77, 215-232, (2000) [5] Strouboulis, T; Babuška, I; Copps, K, The design and analysis of the generalized finite element method, Comput Methods Appl Mech Eng, 181, 43-69, (2000) · Zbl 0983.65127 [6] Strouboulis, T; Copps, K; Babuška, I, The generalized finite element method, Comput Methods Appl Mech Eng, 190, 4081-4193, (2001) · Zbl 0997.74069 [7] Sukumar, N; Chopp, DL; Moës, N; Belytschko, T, Modeling holes and inclusions by level sets in the extended finite-element method, Comput Methods Appl Mech Eng, 190, 6183-6200, (2001) · Zbl 1029.74049 [8] Belytschko, T; Black, T, Elastic crack growth in finite elements with minimal remeshing, Int J Numer Methods Eng, 45, 601-620, (1999) · Zbl 0943.74061 [9] Glowinski, R; Kuznetsov, Y, Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems, Comput Methods Appl Mech Eng, 196, 1498-1506, (2007) · Zbl 1173.65369 [10] Ramière, I; Angot, P; Belliard, M, A general fictitious domain method with immersed jumps and multilevel nested structured meshes, J Comput Phys, 225, 1347-1387, (2007) · Zbl 1122.65115 [11] Parvizian, J; Düster, A; Rank, E, Finite cell method—h- and p-extension for embedded domain problems in solid mechanics, Comput Mech, 41, 121-133, (2007) · Zbl 1162.74506 [12] Düster, A; Parvizian, J; Yang, Z; Rank, E, The finite cell method for three-dimensional problems of solid mechanics, Comput Methods Appl Mech Eng, 197, 3768-3782, (2008) · Zbl 1194.74517 [13] Schillinger, D; Ruess, M; Zander, N; Bazilevs, Y; Düster, A; Rank, E, Small and large deformation analysis with the p- and B-spline versions of the finite cell method, Comput Mech, 50, 445-478, (2012) · Zbl 1398.74401 [14] Ruess, M; Schillinger, D; Bazilevs, Y; Varduhn, V; Rank, E, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Int J Numer Methods Eng, 95, 811-846, (2013) · Zbl 1352.65643 [15] Ruess, M; Schillinger, D; Özcan, A; Rank, E, Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput Methods Appl Mech Eng, 269, 46-71, (2014) · Zbl 1296.74013 [16] Kollmannsberger, S; Özcan, A; Baiges, J; Ruess, M; Rank, E; Reali, A, Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches, Int J Numer Methods Eng, 101, 1-30, (2014) · Zbl 1352.65520 [17] Béchet, E; Minnebo, H; Moës, N; Burgardt, B, Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Int J Numer Methods Eng, 64, 1033-1056, (2005) · Zbl 1122.74499 [18] Lang, C; Makhija, D; Doostan, A; Maute, K, A simple and efficient preconditioning scheme for heaviside enriched XFEM, Comput Mech, 54, 1357-1374, (2014) · Zbl 1311.74124 [19] Heinze, S; Joulaian, M; Egger, H; Düster, A, Efficient computation of cellular materials using the finite cell method, Proc Appl Math Mech, 14, 251-252, (2014) [20] Schillinger, D; Rank, E, An unfitted $$hp$$ adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput Methods Appl Mech Eng, 200, 3358-3380, (2011) · Zbl 1230.74197 [21] Schillinger, D; Düster, A; Rank, E, The $$hp$$-$$d$$-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Int J Numer Methods Eng, 89, 1171-1202, (2012) · Zbl 1242.74161 [22] Joulaian, M; Düster, A, Local enrichment of the finite cell method for problems with material interfaces, Comput Mech, 52, 741-762, (2013) · Zbl 1311.74123 [23] Zander, N; Bog, T; Kollmannsberger, S; Schillinger, D; Rank, E, Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes, Comput Mech, 55, 499-517, (2015) · Zbl 1311.74133 [24] Yang, Z; Ruess, M; Kollmannsberger, S; Düster, A; Rank, E, An efficient integration technique for the voxel-based finite cell method, Int J Numer Methods Eng, 91, 457-471, (2012) [25] Müller, B; Kummer, F; Oberlack, M; Wang, Y, Simple multidimensional integration of discontinuous functions with application to level set methods, Int J Numer Methods Eng, 92, 637-651, (2012) · Zbl 1352.65084 [26] Cheng, KW; Fries, T-P, Higher-order XFEM for curved strong and weak discontinuities, Int J Numer Methods Eng, 82, 564-590, (2009) · Zbl 1188.74052 [27] Abedian, A; Parvizian, J; Düster, A; Khademyzadeh, H; Rank, E, Performance of different integration schemes in facing discontinuities in the finite cell method, Int J Comput Methods, 10, 1350002, (2013) · Zbl 1359.65245 [28] Abedian, A; Parvizian, J; Düster, A; Rank, E, Finite cell method compared to $$h$$-version finite element method for elasto-plastic problems, Appl Math Mech, 35, 1239-1248, (2014) [29] Ventura, G, On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method, Int J Numer Methods Eng, 66, 761-795, (2006) · Zbl 1110.74858 [30] Ventura, G; Benvenuti, E, Equivalent polynomials for quadrature in heaviside function enrichment elements, Int J Numer Methods Eng, 102, 688-710, (2015) · Zbl 1352.65559 [31] Höllig, K; Hörner, J, Programming finite element methods with weighted bsplines, Comput Math Appl, 70, 1441-1456, (2015) [32] Sukumar, N; Moës, N; Moran, B; Belytschko, T, Extended finite element method for three-dimensional crack modelling, Int J Numer Methods Eng, 48, 1549-1570, (2000) · Zbl 0963.74067 [33] Stazi, FL; Budyn, E; Chessa, J; Belytschko, T, An extended finite element method with higher-order elements for curved cracks, Comput Mech, 31, 38-48, (2003) · Zbl 1038.74651 [34] Dréau, K; Chevaugeon, N; Moës, N, Studied X-FEM enrichment to handle material interfaces with higher order finite element, Comput Methods Appl Mech Eng, 199, 1922-1936, (2010) · Zbl 1231.74406 [35] Moumnassi, M; Belouettar, J; Béchet, É; Bordas, SPA; Quoirin, D; Potier-Ferry, M, Finite element analysis on implicitly defined domains, Comput Methods Appl Mech Eng, 200, 5-8, (2011) · Zbl 1225.65111 [36] Kudela, L; Zander, N; Bog, T, Efficient and accurate numerical quadrature for immersed boundary methods, Adv Model Simul Eng Sci, 2, 1-22, (2015) [37] Loehnert, S; Mueller-Hoeppe, DS; Wriggers, P, 3D corrected XFEM approach and extension to finite deformation theory, Int J Numer Methods Eng, 86, 431-452, (2011) · Zbl 1216.74026 [38] Höllig K (2003) Finite element methods with B-splines. Frontiers in Applied Mathematics. SIAM Soc Ind Appl Math · Zbl 1020.65085 [39] Lyness, JN; Jespersen, D, Moderate degree symmetric quadrature rules for the triangle, J Inst Math Appl, 15, 19-32, (1975) · Zbl 0297.65018 [40] Lyness, JN; Monegato, Giovanni, Quadrature rules for regions having regular hexagonal symmetry, SIAM J Numer Anal, 14, 283-295, (1977) · Zbl 0365.65014 [41] Dunavant, DA, Economical symmetrical quadrature rules for complete polynomials over a square domain, Int J Numer Methods Eng, 21, 1777-1784, (1985) · Zbl 0591.65018 [42] Dunavant, DA, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int J Numer Methods Eng, 21, 1129-1148, (1985) · Zbl 0589.65021 [43] Mousavi, SE; Sukumar, N, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput Mech, 47, 535-554, (2011) · Zbl 1221.65078 [44] Sudhakar, Y; Wall, WA, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Comput Methods Appl Mech Eng, 258, 39-54, (2013) · Zbl 1286.65037 [45] Müller, B; Kummer, F; Oberlack, M, Highly accurate surface and volume integration on implicit domains by means of moment-Fitting, Int J Numer Methods Eng, 96, 512-528, (2013) · Zbl 1352.65083 [46] Thiagarajan, V; Shapiro, V, Adaptively weighted numerical integration over arbitrary domains, Comput Math Appl, 67, 1682-1702, (2014) · Zbl 1362.65029 [47] Hubrich S, Joulaian M, Düster A (2015) Numerical integration inthe finite cell method based on moment-fitting. In Proceedingsof 3rd ECCOMAS Young Investigators Conference, 6th GACM Colloquium, pp. 1-4, Aachen, Germany · Zbl 1194.74517 [48] http://www.netlib.org/lapack/ · Zbl 1398.74401 [49] Bungartz H-J, Griebel M, Zenger C (2004) Introduction to Computer Graphics, 2nd edn. Charles River Media Inc, Hingham · Zbl 0869.68102 [50] http://www.cgal.org/ · Zbl 1311.74133 [51] http://www.opencascade.org/ [52] https://github.com/libigl/libigl/ [53] http://gts.sourceforge.net/ · Zbl 1183.65026 [54] https://github.com/gilbo/cork/ · Zbl 1162.74506 [55] Düster A, Kollmannsberger S (2010) AdhoC$$\, ^4$$ - User’s Guide. Lehrstuhl für Computation in Engineering, TU München, Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik, TU Hamburg-Harburg, 2010 · Zbl 0997.74069 [56] Lorensen, WE; Cline, HE, A discontinuous Galerkin method for the Navier-Stokes equations, ACM SIGGRAPH Comput Graph Arch, 21, 163-169, (1987) [57] Newman, TS; Yi, H, A survey of the marching cubes algorithm, Comput Graph, 30, 854-879, (2006) [58] Xiao H, Gimbutas Z (2010) A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput Math Appl 59(2):663-676 · Zbl 1189.65047 [59] Mousavi SE, Sukumar N (2010) Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199(49-52):3237-3249 · Zbl 1225.74099 [60] Mousavi, SE; Xiao, H; Sukumar, N, Generalized Gaussian quadrature rules on arbitrary polygons, Int J Numer Methods Eng, 82, 99-113, (2010) · Zbl 1183.65026 [61] http://maxima.sourceforge.net/ · Zbl 0949.65117 [62] Düster, A; Sehlhorst, H-G; Rank, E, Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method, Comput Mech, 50, 413-431, (2012) · Zbl 1386.74117 [63] Yang, Z; Kollmannsberger, S; Düster, A; Ruess, M; Garcia, E; Burgkart, R; Rank, E, Non-standard bone simulation: interactive numerical analysis by computational steering, Comput Vis Sci, 14, 207-216, (2012) [64] Heinze, S; Joulaian, M; Düster, A, Numerical homogenization of hybrid metal foams using the finite cell method, Comput Math Appl, 70, 1501-1517, (2015) [65] https://www.gnu.org/software/octave/ [66] Dauge, M; Düster, A; Rank, E, Theoretical and numerical investigation of the finite cell method, J Sci Comput, 65, 1039-1064, (2015) · Zbl 1331.65160 [67] Bröker H (2001) Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München [68] Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York · Zbl 0792.73003 [69] Szabó, BA; Düster, A; Rank, E; Stein, E (ed.); Borst, R (ed.); Hughes, TJR (ed.), The p-version of the finite element method, 119-139, (2004), New York [70] Zienkiewicz OC, Taylor RL (2000) The Finite Element Method—Solid Mechanics. Butterworth-Heinemann, Elsevier · Zbl 0991.74003 [71] Bathe KJ (1996) Finite element procedures. Prentice Hall, Upper Saddle River · Zbl 0994.74001 [72] Hughes TJR (2000) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola · Zbl 1191.74002 [73] Királyfalvi G, Szabó BA (1997) Quasi-regional mapping for the p-version of the finite element method. Finite Elem Anal Des 27:85-97 · Zbl 1386.74117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.