zbMATH — the first resource for mathematics

Finite time blow up in the hyperbolic Boussinesq system. (English) Zbl 1382.35054
Summary: In recent work of G. Luo and T. Y. Hou [Multiscale Model. Simul. 12, No. 4, 1722–1776 (2014; Zbl 1316.35235)], a new scenario for finite time blow up in solutions of 3D Euler equation has been proposed. The scenario involves a ring of hyperbolic points of the flow located at the boundary of a cylinder. In this paper, we propose a two dimensional model that we call “hyperbolic Boussinesq system”. This model is designed to provide insight into the hyperbolic point blow up scenario. The model features an incompressible velocity vector field, a simplified Biot-Savart law, and a simplified term modeling buoyancy. We prove that finite time blow up happens for a natural class of initial data.

35B44 Blow-up in context of PDEs
35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI arXiv
[1] Beale, J. T.; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the 3-d Euler equations, Comm. Math. Phys., 94, 1, 61-66, (1984) · Zbl 0573.76029
[2] Chae, D.; Constantin, P.; Wu, J., An incompressible 2D didactic model with singularity and explicit solutions of the 2D Boussinesq equations, J. Math. Fluid Mech., 16, 3, 473-480, (2014) · Zbl 1307.35213
[3] Choi, K.; Hou, T. Y.; Kiselev, A.; Luo, G.; Sverak, V.; Yao, Y., On the finite-time blowup of a one-dimensional model for the three-dimensional axisymmetric Euler equations, Comm. Pure Appl. Math., 70, 11, 2218-2243, (2017) · Zbl 1377.35218
[4] Choi, K.; Kiselev, A.; Yao, Y., Finite time blow up for a 1D model of 2D Boussinesq system, Comm. Math. Phys., 334, 3, 1667-1679, (2015) · Zbl 1309.35072
[5] Do, T.; Kiselev, A.; Xu, X., Stability of blowup for a 1D model of axisymmetric 3D Euler equation, J. Nonlinear Sci., (2016), in press
[6] Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H., Blowup with vorticity control for a 2D model of the Boussinesq equations, (2016), preprint · Zbl 1387.35066
[7] Hoang, V.; Radosz, M., Singular solutions with vorticity control for a nonlocal system of evolution equations, (2016), preprint
[8] Hou, T. Y.; Liu, P., Self-similar singularity of a 1D model for the 3D axisymmetric Euler equations, Res. Math. Sci., 2, 1, 5, (2015) · Zbl 1320.35269
[9] Kiselev, A.; Šverák, V., Small scale creation for solutions of the incompressible two-dimensional Euler equation, Ann. of Math., 180, 3, 1205-1220, (2014) · Zbl 1304.35521
[10] Luo, G.; Hou, T. Y., Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation, Multiscale Model. Simul., 12, 4, 1722-1776, (2014) · Zbl 1316.35235
[11] Majda, A. J.; Bertozzi, A. L., Vorticity and incompressible flow, vol. 27, (2002), Cambridge University Press · Zbl 0983.76001
[12] Marchioro, C.; Pulvirenti, M., Mathematical theory of incompressible nonviscous fluids, vol. 96, (2012), Springer Science &amp Business Media
[13] Tao, T., Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation, Ann. Partial Differential Equations, 2, 9, (2016) · Zbl 1397.35181
[14] Wolibner, W., Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., 37, 1, 698-726, (1933) · Zbl 0008.06901
[15] Yudovich, V. I., Eleven great problems of mathematical hydrodynamics, Mosc. Math. J., 3, 2, 711-737, (2003) · Zbl 1061.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.