zbMATH — the first resource for mathematics

Evolving neural networks with genetic algorithms to study the string landscape. (English) Zbl 1381.83128
Summary: We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
90B10 Deterministic network models in operations research
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI
[1] Candelas, P.; Dale, AM; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys., B 298, 493, (1988)
[2] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002) · Zbl 1017.52007
[3] Morrison, DR; Taylor, W., Toric bases for 6D F-theory models, Fortsch. Phys., 60, 1187, (2012) · Zbl 1255.81210
[4] Morrison, DR; Taylor, W., Classifying bases for 6D F-theory models, Central Eur. J. Phys., 10, 1072, (2012) · Zbl 1255.81210
[5] Gray, J.; Haupt, AS; Lukas, A., All complete intersection Calabi-Yau four-folds, JHEP, 07, 070, (2013) · Zbl 1342.14086
[6] Anderson, LB; Apruzzi, F.; Gao, X.; Gray, J.; Lee, S-J, A new construction of Calabi-Yau manifolds: generalized cicys, Nucl. Phys., B 906, 441, (2016) · Zbl 1334.14023
[7] Davey, J.; Hanany, A.; Pasukonis, J., On the classification of brane tilings, JHEP, 01, 078, (2010) · Zbl 1269.81120
[8] Anderson, LB; Constantin, A.; Gray, J.; Lukas, A.; Palti, E., A comprehensive scan for heterotic SU(5) GUT models, JHEP, 01, 047, (2014)
[9] Nilles, HP; Vaudrevange, PKS, Geography of fields in extra dimensions: string theory lessons for particle physics, Mod. Phys. Lett., A 30, 1530008, (2015) · Zbl 1310.81007
[10] Groot Nibbelink, S.; Loukas, O.; Ruehle, F.; Vaudrevange, PKS, Infinite number of MSSMs from heterotic line bundles?, Phys. Rev., D 92, 046002, (2015)
[11] Blaszczyk, M.; Groot Nibbelink, S.; Loukas, O.; Ruehle, F., Calabi-Yau compactifications of non-supersymmetric heterotic string theory, JHEP, 10, 166, (2015) · Zbl 1338.81337
[12] Franco, S.; Lee, S.; Seong, R-K; Vafa, C., Brane brick models in the mirror, JHEP, 02, 106, (2017) · Zbl 1377.81139
[13] Halverson, J.; Tian, J., Cost of seven-brane gauge symmetry in a quadrillion F-theory compactifications, Phys. Rev., D 95, 026005, (2017)
[14] J. Halverson, C. Long and B. Sung, On algorithmic universality in F-theory compactifications, arXiv:1706.02299 [INSPIRE]. · Zbl 1269.81120
[15] Douglas, MR, The statistics of string/M theory vacua, JHEP, 05, 046, (2003)
[16] Kachru, S.; Kallosh, R.; Linde, AD; Trivedi, SP, De Sitter vacua in string theory, Phys. Rev., D 68, 046005, (2003) · Zbl 1244.83036
[17] Y.-H. He, Deep-learning the landscape, arXiv:1706.02714 [INSPIRE].
[18] D. Krefl and R.-K. Seong, Machine learning of Calabi-Yau volumes, arXiv:1706.03346 [INSPIRE]. · Zbl 1388.81491
[19] B.C. Allanach, D. Grellscheid and F. Quevedo, Genetic algorithms and experimental discrimination of SUSY models, JHEP07 (2004) 069 [hep-ph/0406277] [INSPIRE].
[20] Abel, S.; Rizos, J., Genetic algorithms and the search for viable string vacua, JHEP, 08, 010, (2014)
[21] Cybenko, G., Approximations by superpositions of sigmoidal functions, Math. Control. Sign. Syst., 2, 303, (1989) · Zbl 0679.94019
[22] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories, JHEP, 07, 017, (2013) · Zbl 1342.81391
[23] Buchbinder, EI; Constantin, A.; Lukas, A., The moduli space of heterotic line bundle models: a case study for the tetra-quadric, JHEP, 03, 025, (2014)
[24] L.B. Anderson, J. Gray, S.J. Lee, Y.H. He and A. Lukas, A 2009 ‘CICY package’. · Zbl 1342.14086
[25] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and a new heterotic standard model, JHEP, 02, 054, (2010) · Zbl 1270.81146
[26] He, Y-H; Lee, S-J; Lukas, A., Heterotic models from vector bundles on toric Calabi-Yau manifolds, JHEP, 05, 071, (2010) · Zbl 1287.81094
[27] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[28] Gray, J.; He, Y-H; Ilderton, A.; Lukas, A., A new method for finding vacua in string phenomenology, JHEP, 07, 023, (2007)
[29] Anderson, LB; He, Y-H; Lukas, A., Heterotic compactification, an algorithmic approach, JHEP, 07, 049, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.