A second order self-consistent IMEX method for radiation hydrodynamics. (English) Zbl 1381.76262

Summary: We present a second order self-consistent implicit/explicit (methods that use the combination of implicit and explicit discretizations are often referred to as IMEX (implicit/explicit) methods) time integration technique for solving radiation hydrodynamics problems. The operators of the radiation hydrodynamics are splitted as such that the hydrodynamics equations are solved explicitly making use of the capability of well-understood explicit schemes. On the other hand, the radiation diffusion part is solved implicitly. The idea of the self-consistent IMEX method is to hybridize the implicit and explicit time discretizations in a nonlinearly consistent way to achieve second order time convergent calculations. In our self-consistent IMEX method, we solve the hydrodynamics equations inside the implicit block as part of the nonlinear function evaluation making use of the Jacobian-free Newton Krylov (JFNK) method. This is done to avoid order reductions in time convergence due to the operator splitting. We present results from several test calculations in order to validate the numerical order of our scheme. For each test, we have established second order time convergence.


76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
85A25 Radiative transfer in astronomy and astrophysics
Full Text: DOI


[1] Ascher, U.M.; Ruuth, S.J.; Spiteri, R.J., Implicit – explicit runge – kutta methods for time dependent partial differential equations, Appl. numer. math., 25, 151-167, (1997) · Zbl 0896.65061
[2] Ascher, U.M.; Ruuth, S.J.; Wetton, B., Implicit – explicit methods for time dependent pde’s, SIAM J. numer. anal., 32, 797-823, (1995) · Zbl 0841.65081
[3] Bates, J.W.; Knoll, D.A.; Rider, W.J.; Lowrie, R.B.; Mousseau, V.A., On consistent time-integration methods for radiation hydrodynamics in the equilibrium diffusion limit: low energy – density regime, J. comput. phys., 167, 99-130, (2001) · Zbl 1052.76041
[4] Bowers, R.L.; Wilson, J.R., Numerical modeling in applied physics and astrophysics, (1991), Jones & Bartlett Boston · Zbl 0786.76001
[5] Brown, P.N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. sci. stat. comput., 11, 450-481, (1990) · Zbl 0708.65049
[6] Dai, W.; Woodward, P.R., Numerical simulations for radiation hydrodynamics. I. diffusion limit, J. comput. phys., 142, 182, (1998) · Zbl 0933.76057
[7] Drake, R.P., Theory of radiative shocks in optically thick media, Phys. plasmas, 14, 43301, (2007)
[8] Ensman, L., Test problems for radiation and radiation hydrodynamics codes, Astrophys. J., 424, 275-291, (1994)
[9] Dembo, R., Inexact Newton methods, SIAM J. numer. anal., 19, 400-408, (1982) · Zbl 0478.65030
[10] Geiser, J., Iterative operator-splitting methods with higher-order time integration methods and applications for parabolic partial differential equations, J. comput. appl. math., 217, 1, 227-242, (2008) · Zbl 1144.65062
[11] Gottlieb, S.; Shu, C.W., Total variation diminishing runge – kutta schemes, Math. comput., 221, 73-85, (1998) · Zbl 0897.65058
[12] Gottlieb, S.; Shu, C.W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM rev., 43, 1, 89-112, (2001) · Zbl 0967.65098
[13] Anderson, J.D., Modern compressible flow, (1990), Mc Graw Hill
[14] Kadioglu, S.Y.; Knoll, D.A., A fully second order implicit/explicit time integration technique for hydrodynamics plus nonlinear heat conduction problems, J. comput. phys., 229, 3237-3249, (2010) · Zbl 1307.76056
[15] Kadioglu, S.Y.; Knoll, D.A.; Oliveria, C., Multi-physics analysis of spherical fast burst reactors, Nucl. sci. eng., 163, 1-12, (2009)
[16] Kadioglu, S.Y.; Sussman, M.; Osher, S.; Wright, J.P.; Kang, M., A second order primitive preconditioner for solving all speed multi-phase flows, J. comput. phys., 209, 2, 477-503, (2005) · Zbl 1138.76414
[17] Kelley, C.T., Solving nonlinear equations with newton’s method, (2003), SIAM · Zbl 1031.65069
[18] Khan, L.A.; Liu, P.L., An operator-splitting algorithm for coupled one-dimensional advection – diffusion – reaction equations, Comput. methods appl. mech. eng., 127, 181-201, (1994) · Zbl 0862.76060
[19] Kim, J.; Moin, P., Application of a fractional-step method to incompressible navier – stokes equations, J. comput. phys., 59, 308-323, (1985) · Zbl 0582.76038
[20] Knoll, D.A.; Keyes, D.E., Jacobian-free Newton Krylov methods: a survey of approaches and applications, J. comput. phys., 193, 357-397, (2004) · Zbl 1036.65045
[21] Knoll, D.A.; Rider, W.J.; Olson, G.L., An efficient nonlinear solution method for non-equilibrium radiation diffusion, J. quant. spectrosc. radiat. transfer, 63, 15-29, (1999)
[22] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Texts in Applied Mathematics, Cambridge University Press, 1998.
[23] Lowrie, R.B.; Edwards, J.D., Radiative shock solutions with grey nonequilibrium diffusion, Shock waves, 18, 129-143, (2008) · Zbl 1255.76057
[24] Lowrie, R.B.; Morel, J.E.; Hittinger, J.A., The coupling of radiation and hydrodynamics, Astrophys. J., 521, 432, (1999)
[25] Lowrie, R.B.; Rauenzahn, R.M., Radiative shock solutions in the equilibrium diffusion limit, Shock waves, 16, 445-453, (2007) · Zbl 1195.76238
[26] McClarren, R.G.; Lowrie, R.B., The effects of slope limiting on asymptotic preserving numerical methods for hyperbolic conservations laws, J. comput. phys., 227, 9711-9726, (2008) · Zbl 1154.65077
[27] G.C. Pomraning, Radiation Hydrodynamics, Los Alamos Technical Report, LA-UR-82-2625.
[28] R.M. Rauenzahn, Private communication.
[29] Reid, J.K., On the methods of conjugate gradients for the solution of large sparse systems of linear equations, Large sparse sets of linear equations, (1971), Academic Press New York · Zbl 0229.65032
[30] Rider, W.J.; Knoll, D.A., Time step size selection for radiation diffusion calculations, J. comput. phys., 152, 2, 790-795, (1999) · Zbl 0940.65101
[31] Ropp, D.L.; Shadid, J.N., Stability of operator splitting methods for systems with indefinite operators: advection – diffusion – reaction systems, J. comput. phys., 228, 3508-3516, (2009) · Zbl 1168.65380
[32] Ruuth, S.J., Implicit – explicit methods for reaction – diffusion problems in pattern formation, J. math. biol., 34, 148-176, (1995) · Zbl 0835.92006
[33] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM · Zbl 1002.65042
[34] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. comput. phys., 77, 439, (1988) · Zbl 0653.65072
[35] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. comput. phys., 83, 32, (1989) · Zbl 0674.65061
[36] Smoller, J., Shock waves and reaction – diffusion equations, (1994), Springer · Zbl 0807.35002
[37] Strikwerda, J.C., Finite difference schemes partial differential equations, (1989), Wadsworth & Brooks/Cole, Advance Books & Software, Pacific Grove California · Zbl 0681.65064
[38] Szilard, R.H.; Pomraning, G.C., Numerical transport and diffusion methods in radiative transfer, Nucl. sci. eng., 112, 256, (1992)
[39] J.W. Thomas, Numerical Partial Differential Equations I (Finite Difference Methods), Texts in Applied Mathematics, Springer-Verlag, New York, 1998.
[40] J.W. Thomas, Numerical Partial Differential Equations II (Conservation Laws and Elliptic Equations), Texts in Applied Mathematics, Springer-Verlag, New York, 1999. · Zbl 0927.65109
[41] P. Wesseling, Principles of Computational Fluid Dynamics, Springer Series in Computational Mathematics, Springer, 2000. · Zbl 0960.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.