Vortex reconnection in the three dimensional Navier-Stokes equations. (English) Zbl 1381.35117

Summary: We prove that the vortex structures of solutions to the 3D Navier-Stokes equations can change their topology without any loss of regularity. More precisely, we construct smooth high-frequency solutions to the Navier-Stokes equations where vortex lines and vortex tubes of arbitrarily complicated topologies are created and destroyed in arbitrarily small times. This instance of vortex reconnection is structurally stable and in perfect agreement with the existing computer simulations and experiments. We also provide a (non-structurally stable) scenario where the destruction of vortex structures is instantaneous.


35Q30 Navier-Stokes equations
35Q31 Euler equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D17 Viscous vortex flows
Full Text: DOI arXiv


[1] Cheng, C. Q.; Wang, L., Destruction of Lagrangian torus for positive definite Hamiltonian systems, Geom. Funct. Anal., 23, 848-866, (2013) · Zbl 1276.37042
[2] Constantin, P., Eulerian-Lagrangian formalism and vortex reconnection, (Bourgain, J.; Kenig, C. E.; Klainerman, S., Mathematical Aspects of Nonlinear Dispersive Equations, (2007), Princeton University Press Princeton), 157-170 · Zbl 1175.35109
[3] Duke, W., Rational points on the sphere, Ramanujan J., 7, 235-239, (2003) · Zbl 1156.11316
[4] Enciso, A.; Peralta-Salas, D., Knots and links in steady solutions of the Euler equation, Ann. of Math., 175, 345-367, (2012) · Zbl 1238.35092
[5] Enciso, A.; Peralta-Salas, D., Existence of knotted vortex tubes in steady Euler flows, Acta Math., 214, 61-134, (2015) · Zbl 1317.35184
[6] Enciso, A.; Peralta-Salas, D.; Torres de Lizaur, F., Knotted structures in high-energy Beltrami fields on the torus and the sphere, Ann. Sci. Éc. Norm. Supér., (2017), in press · Zbl 1379.35226
[7] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1990), Springer-Verlag New York
[8] Herman, M., Sur LES courbes invariantes par LES difféomorphismes de l’anneau, Astérisque, 103-104, (1983), 221 pp.
[9] Hörmander, L., The analysis of linear partial differential operators I, (2003), Springer Berlin
[10] Kerr, R. M., Simulated Navier-Stokes trefoil reconnection
[11] Khesin, B.; Kuksin, S.; Peralta-Salas, D., KAM theory and the 3D Euler equation, Adv. Math., 267, 498-522, (2014) · Zbl 1303.37035
[12] Kida, S.; Takaoka, M., Vortex reconnection, Annu. Rev. Fluid Mech., 26, 169-189, (1994) · Zbl 0802.76016
[13] Kleckner, D.; Irvine, W. T.M., Creation and dynamics of knotted vortices, Nature Phys., 9, 253-258, (2013)
[14] Ohkitani, K.; Constantin, P., Numerical study of the eulerian-Lagrangian formulation of the Navier-Stokes equations, Phys. Fluids, 15, 3251-3254, (2003) · Zbl 1186.76401
[15] Ponce, G.; Racke, R.; Sideris, T.; Titi, E., Global stability of large solutions to the 3d Navier-Stokes equations, Comm. Math. Phys., 159, 329-341, (1994) · Zbl 0795.35082
[16] Scheeler, M. W.; Kleckner, D.; Proment, D.; Kindlmann, G. L.; Irvine, W. T.M., Helicity conservation by flow across scales in reconnecting vortex links and knots, Proc. Nat. Acad. Sci., 111, 15350-15355, (2014)
[17] Zabusky, N. J.; Boratav, O. N.; Pelz, R. B.; Gao, M.; Silver, D.; Cooper, S. P., Emergence of coherent patterns of vortex stretching during reconnection: a scattering paradigm, Phys. Rev. Lett., 67, 2469-2473, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.