×

zbMATH — the first resource for mathematics

Optimistic value model of multidimensional uncertain optimal control with jump. (English) Zbl 1380.93286
Summary: Based on the optimistic value model of uncertain optimal control with jump in one-dimensional case, this paper investigates the optimistic value model of multidimensional uncertain optimal control with jump, which are based on a new uncertainty theory and differs from the stochastic optimal control based on probability theory. The principle of optimality is given and the equation of optimality is obtained. In the end, an example of a portfolio selection is presented to illustrate the effectiveness of the new results.

MSC:
93E20 Optimal stochastic control
93C41 Control/observation systems with incomplete information
91G10 Portfolio theory
49K45 Optimality conditions for problems involving randomness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boulier, J.-F.; Trussant, E.; Florens, D., A dynamic model for pension funds management, Proceedings of the Fifth AFIR International Colloquium, 1, 361-384, (1995)
[2] Cairns, A., Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time, ASTIN Bull., 30, 1, 19-55, (2000) · Zbl 1018.91028
[3] Chen, X., American option pricing formula for uncertain financial market, Int. J. Oper. Res., 8, 2, 32-37, (2011)
[4] Chen, Y.; Deng, L., Discrete-time uncertain LQ optimal control with indefinite control weight costs, J. Adv. Comput. Intell. Intell. Inform., 20, 4, 633-639, (2016)
[5] Chen, R.; Zhu, Y., An optimal control model for uncertain systems with time-delay, J. Oper. Res. Soc. Jpn., 56, 4, 243-256, (2013) · Zbl 1295.49019
[6] Deng, L., Multidimensional uncertain optimal control of linear quadratic models with jump, J. Comput. Inf. Syst., 8, 18, 7441-7448, (2012)
[7] Deng, L.; Chen, Y., Optimistic value model of uncertain linear quadratic optimal control with jump, J. Adv. Comput. Intell. Intell. Inform., 20, 2, 189-196, (2016)
[8] Deng, L.; Chen, Y., Optimal control of uncertain systems with jump under optimistic value criterion, Eur. J. Control, (2017) · Zbl 1380.49030
[9] Deng, L.; Zhu, Y., An uncertain optimal control model with n jumps and application, Comput. Sci. Inf. Syst., 9, 4, 1453-1468, (2012)
[10] Deng, L.; Zhu, Y., Uncertain optimal control with jump, ICIC Express Lett. Part B Appl., 3, 2, 419-424, (2012)
[11] Deng, L.; Zhu, Y., Uncertain optimal control of linear quadratic models with jump, Math. Comput. Model., 57, 9-10, 2432-2441, (2013) · Zbl 1286.93202
[12] Dixit, A.; Pindyck, R., Investment Under Uncertainty, (1994), Princeton University Press Princeton
[13] Fleming, W.; Rishel, R., Deterministic and Stochastic Optimal Control, (1986), Springer-Verlag New York
[14] Kang, Y.; Zhu, Y., Bang-bang optimal control for multi-stage uncertain systems, Inf. Int. Interdiscip. J., 15, 8, 3229-3237, (2012) · Zbl 1323.49014
[15] Li, X.; Liu, B., Hybrid logic and uncertain logic, J. Uncertain Syst., 3, 2, 83-94, (2009)
[16] Li, B.; Zhu, Y., Parametric optimal control for uncertain linear quadratic models, Appl. Soft Comput., 56, 543-550, (2017)
[17] Liu, B., Uncertainty Theory, (2007), Springer-Verlag Berlin
[18] Liu, B., Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2, 1, 3-16, (2008)
[19] Liu, B., Some research problems in uncertainty theory, J. Uncertain Syst., 3, 1, 3-10, (2009)
[20] Liu, B., Theory and Practice of Uncertain Programming, (2009), Springer-Verlag Berlin · Zbl 1158.90010
[21] Liu, B., Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, (2010), Springer-Verlag Berlin
[22] Liu, B., Why is there a need for uncertainty theory?, J. Uncertain Syst., 6, 1, 3-10, (2012)
[23] Markowitz, H., Portfolio selection, J. Finance, 7, 1, 77-91, (1952)
[24] Merton, R., Optimal consumption and portfolio rules in a continuous time model, J. Econ. Theory, 42, 3, 373-413, (1971) · Zbl 1011.91502
[25] Sheng, L.; Zhu, Y., Optimistic value model of uncertain optimal control, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 21, Suppl. 1, 75-83, (2013) · Zbl 1322.93064
[26] Wang, X.; Gao, Z.; Guo, H., Uncertain hypothesis testing for two experts’ empirical data, Math. Comput. Model., 55, 3-4, 1478-1482, (2012) · Zbl 1255.62040
[27] Xu, X.; Zhu, Y., Uncertain bang-bang control for continuous time model, Cybern. Syst. Int. J., 43, 6, 515-527, (2012) · Zbl 1331.93228
[28] Yan, H.; Zhu, Y., Bang-bang control model for uncertain switched systems, Appl. Math. Model., 39, 10-11, 2994-3002, (2015)
[29] Yao, K.; Qin, Z., An uncertain control model with application to production inventory system, Proceedings of the Twelfth Asia Pacific Industrial Engineering and Management Systems Conference, 972-977, (2011), Beijing, China
[30] Zhou, X.; Li, D., Continuous-time mean-variance portfolio selection: a stochastic LQ framework, Appl. Math. Optim., 42, 1, 19-33, (2000) · Zbl 0998.91023
[31] Zhu, Y., Uncertain optimal control with application to a portfolio selection model, Cybern. Syst., 41, 7, 535-547, (2010) · Zbl 1225.93121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.